精英家教网 > 初中数学 > 题目详情
如图,正方形中,上一点,且为等腰直角三角形,斜边交于点,延长的延长线交于点,连接,作,垂足为,下列结论:①;②为等腰直角三角形;③;④;⑤.其中正确的个数为(      )
A.2个B.3个C.4个D.5个
C
①利用等腰直角三角形的性质,互余关系可证△ABM≌△MGN;②由①的结论推出NG=CG即可;③由已知BM= BC,设AB=BC=3x,则MG=MC+CG=BC=3x,CG=NG=x,由NG∥AB得△EGN∽△EBA,利用相似比证明MG≠EG即可;④分别求两个三角形的底和高,再比较面积;⑤利用旋转法将△AMB绕A点逆时针旋转90°到△AHD的位置,证明△AHF≌△AMF即可.
解:①∵△AMN为等腰三角形,∴AM=MN,∠AMN=90°,
∴∠AMB=90°-∠NMG=∠MNG,又∠B=∠NGM=90°,
∴△ABM≌△MGN,正确;
②由△ABM≌△MGN,得NG=BM,而CG=MG-MC=AB-MC=BC-MC=BM,∴NG=CG,
又∠CNG=90°,∴△CNG为等腰直角三角形,正确;
③设AB=BC=3x,则MG=MC+CG=BC=3x,CG=NG=x,
由NG∥AB得△EGN∽△EBA,
==,EG=BG=2x,MG≠EG,故MN≠EN,错误;
④由③可知AB=CE=3x,又BM=NG,
∴SABM=SCEN,正确;
⑤如图,延长CD到H,使DH=BM,可证△ABM≌△ADH,
∴AM=AH,∠BAM=∠DAH,
∠HAF=∠DAH+∠DAF=∠BAM+∠DAF=90°-∠MAF=90°-45°=45°,
又AF=AF,
∴△AHF≌△AMF,
∴HF=MF,即BM+DF=MF,正确.
正确的有四个.
故选C.
本题考查了三角形全等,三角形相似的判定与性质,特殊三角形的判定,正方形的性质.关键是明确线段之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

菱形的两条对角线的长分别是6cm和8cm,则菱形的周长是__________cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q以2cm/s的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.

(1)在点P、Q运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;
(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.
①当t为何值时,点P、M、N在一直线上?
②当点P、M、N不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一水库大坝的横截面是梯形ABCD,AD∥BC,EF为水库的水面,点E在DC上,某课题小组在老师带领下想测量水的深度,他们测得背水坡AB的长为12米,迎水坡DE的长为2米,∠BAD=135°,∠ADC=120°,求水深.(精确到0.1米,

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,把直角梯形沿方向平移得到梯形相交于点=20cm,=5cm,=4cm,图中阴影部分的面积与哪个四边形的面积相等,并求出阴影部分的面积

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在3×3的方格中(每个小正方形的边长为1)四边形ABCD是正方形,利用面积的关系探求正方形ABCD的边长是             .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图3,在中,两点分别在上,,将绕点顺时针旋转,得到(如图4,点分别与对应),点上,相交于点

(1)求的度数;
(2)求证:四边形是梯形;
(3)求的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,AB‖CD,∠A=,AB=3,CD=6,BE⊥BC交直线AD于点E.

(1)当点E与D恰好重合时,求AD的长;
(2)当点E在边AD上时(E不与A、D重合),设AD=x,ED=y,试求y关于x的函数关系式,并写出定义域;
(3)问:是否可能使△ABE、△CDE与△BCE都相似?若能,请求出此时AD的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点P是矩形ABCD的边AD的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是(    )

A.2.5        B.1.2          C.2.4         D.4.8

查看答案和解析>>

同步练习册答案