分析 (1)根据图象确定出甲行走的速度,以及乙比甲晚出发的时间即可;
(2)设直线BC对应的函数表达式为y=kx+b,把(10,0)与(40,3000)代入求出k与b的值,即可确定出解析式;
(3)利用待定系数法确定出直线OA解析式,与直线BC解析式联立求出x的值,即可确定出相遇的时间.
解答 解:(1)根据题意得:3000÷60=50(m/min),
则甲行走的速度为50m/min,乙比甲晚出发10min;
(2)设直线BC所对应的函数表达式为y=kx+b,
由题意得:$\left\{\begin{array}{l}{10k+b=0}\\{40k+b=3000}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=100}\\{b=-1000}\end{array}\right.$,
则直线BC所对应的函数表达式为y=100x-1000;
(3)设直线OA所对应的函数表达式为y=ax,
把(60,3000)代入得:a=50,即y=50x,
联立得:$\left\{\begin{array}{l}{y=100x-1000}\\{y=50x}\end{array}\right.$,
消去y得:100x-1000=50x,
解得:x=20,
则甲出发20min后,甲、乙两人在途中相遇.
故答案为:(1)50;10;(3)20
点评 此题考查了一次函数的应用,熟练掌握待定系数法是解本题的关键.
科目:初中数学 来源: 题型:选择题
A. | a>0 | B. | a>3 | C. | a>$\frac{3}{2}$ | D. | a<$\frac{3}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
成绩(分) | 6 | 7 | 8 | 9 | 10 |
人数 | 正 一 | 正 正 一 | 正 正 | 正 |
A. | 8,8 | B. | 8,8.5 | C. | 9,8 | D. | 9,8.5 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x<2 | B. | x≥2 | C. | x=2 | D. | 无解 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
节水量/立方米 | 1 | 1.5 | 2.5 | 3 |
户数/户 | 50 | 80 | a | 70 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0.5×1011 千克 | B. | 50×109 千克 | C. | 5×109 千克 | D. | 5×1010 千克 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com