精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.
(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.
(1)证明:连接OD,
∵EF是⊙O的切线,
∴OD⊥EF,
又∵BH⊥EF,
∴ODBH,
∴∠ODB=∠DBH,
∵OD=OB,
∴∠ODB=∠OBD
∴∠OBD=∠DBH,
即BD平分∠ABH.

(2)过点O作OG⊥BC于点G,则BG=CG=4,
在Rt△OBG中,OG=
OB2-BG2
=
62-42
=2
5

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,PA、PB是⊙O的两条切线,切点A、B.如果∠APO=25°,则∠AOB等于(  )
A.140°B.130°C.120°D.110°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB切⊙O于B,割线ACD经过圆心O,若∠BCD=70°,则∠A的度数为(  )
A.20°B.50°C.40°D.80°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D.如果∠A=35°,那么∠C等于(  )
A.20°B.30°C.35°D.55°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于C,AB=3cm,PB=4cm,则BC=______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,石景山游乐园的观览车半径为25m,已知观览车绕圆心O顺时针做匀速运动,旋转一周用12分钟.某人从观览车的最低处(地面A处)乘车,问经过4分钟后,此人距地面CD的高度是多少米?(观览车距最低处地面高度不计).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,∠C=90°,AC=3cm,BC=4cm,扇形ODF与BC边相切,切点是E,若FO⊥AB于点O.则扇形的半径为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为
3
的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC绕A顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E.
(1)画出旋转后的Rt△ADE;
(2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度;
(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,弦AC与AB成30°的角,CD与⊙O相切于C,交AB的延长线于D.求证:AC=CD.

查看答案和解析>>

同步练习册答案