精英家教网 > 初中数学 > 题目详情
9.(1)7x(5x+2)=6(5x+2)
(2)关于x的一元二次方程x2+3x+m-1=0有两个实数根,求m的取值范围.

分析 (1)先移项,然后根据提公因式法可以解答此方程;
(2)由题意可知,△≥0,从而可以求得m的取值范围.

解答 解:(1)7x(5x+2)=6(5x+2)
7x(5x+2)-6(5x+2)=0
(5x+2)(7x-6)=0,
∴5x+2=0或7x-6=0,
解得,x1=-$\frac{2}{5}$,x2=$\frac{6}{7}$;
(2)∵于x的一元二次方程x2+3x+m-1=0有两个实数根,
∴32-4×1×(m-1)≥0,
解得,m≤$\frac{13}{4}$,
即m的取值范围是m≤$\frac{13}{4}$.

点评 本题考查解一元二次方程、根的判别式,解题的关键是明确它们各自的意义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是(  )
A.2a2-πb2B.2a2-$\frac{π}{2}$b2C.2ab-πb2D.2ab-$\frac{π}{2}$b2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图所示,△ABC≌△DEC,∠ACB=60°,∠BCD=100°,点A恰好落在线段ED上,则∠B的度数为(  )
A.50°B.60°C.55°D.65°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.先化简($\frac{{a}^{2}}{a+2}$-a+2)÷$\frac{4a}{{a}^{2}-4}$,再从-2,2,4,0中选择一个合适的数代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在学习代数式的值时,介绍了计算框图:用“”表示数据输入、输出框;用“”表示数据处理和运算框;用“”表示数据判断框(根据条件决定执行两条路径中的某一条)
(1)①如图1,当输入数x=-2时,输出数y=-9;
②如图2,第一个运算框“”内,应填×5;第二个运算框“”内,应填-3;
(2)①如图3,当输入数x=-1时,输出数y=-43;
②如图4,当输出的值y=37,则输入的值x=42或-6;
(3)为鼓励节约用水,决定对用水实行“阶梯价”:当每月用水量不超过15吨时(含15吨),以2元/吨的价格收费;当每月用水量超过15吨时,超过部分以3元/吨的价格收费.请设计出一个“计算框图”,使得输入数为用水量x,输出数为水费y.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.约分:
(1)-$\frac{12{a}^{2}b}{3ab}$
(2)$\frac{3(a-b)}{12(a-b)^{2}}$
(3)$\frac{{x}^{2}+2x+1}{{x}^{2}-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在矩形ABCD中,点P在边DC上,联结AP,过点A作AE⊥AP交CB的延长线于点E,联结EP交边AB于点F.
(1)求证:△ADP∽△ABE;
(2)若AD:AB=2:3,且CP=2DP,求AF:FB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.先化简,再求值:
2(x3-2y2)-(x-2y)-(x-3y2+2x3),其中x=-2,y=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)计算:$\root{3}{8}$-(π+2)0+|1-$\sqrt{2}$|;    
(2)已知:(x+1)2=16,求x.

查看答案和解析>>

同步练习册答案