精英家教网 > 初中数学 > 题目详情
(2012•郧县三模)如图,已知△ABC中,AB=10,BC=8,AC=6,以BC为直径作⊙O,交AB边于点D,过点D作DF⊥BC,垂足为F,E为AC中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)求DF的长;
(3)在BC上是否存在一点P,使DP+EP最小?若存在,求出点P的位置;若不存在,请说明理由.
分析:(1)连接DE,则可得ED=EA=EC,从而可得∠ECD=∠EDC,再由OC=OD,可得∠OCD=∠ODC,结合∠ECD+∠OCD=90°可证明OD⊥ED,继而可得出结论;
(2)根据△BCD∽△BAC,可得出BD的长度,然后根据△BDF∽△BAC,可求出DF的长度.
(3)延长DF交圆O于点H,连接ED',则ED'与BC的交点即是点P的位置,然后求出CF,结合△ECP∽△D'FP可求出CP的长度.
解答:解:(1)连接OD,

∵BC是直径,
∴∠CDB=90°,也可得出∠CDA=90°,
又∵点E是AC的中点,
∴ED=EC=EA,
∴∠ECD=∠EDC,
∵OD=OC,
∴∠OCD=∠ODC,
又∵∠ECD+∠OCD=90°,
∴∠EDC+∠ODC=90°,
∴OD⊥ED,
故DE是⊙O的切线.
(2)∵AB=10,BC=8,AC=6,
∴AC2+BC2=AB2
∴∠BCA=90°,
∵∠B=∠B,∠BDC=∠BCA=90°,
∴△BCD∽△BAC,
BD
BC
=
BC
AB
,即
BD
8
=
8
10

解得:BD=
32
5

又∵∠B=∠B,∠BFD=∠BCA=90°,
∴△BDF∽△BAC,
BD
BA
=
DF
AC
,即
BD
10
=
DF
6

解得:DF=
96
25

(3)

∵∠DCF=∠BAC,∠DFC=∠BDC=90°,
∴△BAC∽△DCF,
CF
AC
=
DF
BC
,即
CF
6
=
DF
8

解得:CF=
72
25

∵∠BCA=∠CFD'=90°,∠EPC=∠D'PF,
∴△ECP∽△D'FP,
从而
CP
PF
=
CE
FD′
,即
CP
PF
=
3
96
25
=
25
32

又∵CP+FP=CP=
72
25

∴CP=
24
19
.即点P的位置在距离C点右方
24
19
远处.
点评:本题属于圆的综合题,涉及了相似三角形的判定与性质、勾股定理的逆定理、轴对称求最短路径的问题,综合性较强,难度较大,解答本题的关键是熟练各个知识点的内容,将所学的知识融会贯通.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•郧县三模)如图,已知直线y=kx+b(k>0)与抛物线y=x2交于A、B两点(A、B两点分别位于第二和第一象限),且A、B两点的纵坐标分别是1和9,则不等式x2-kx-b>0的解集为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•郧县三模)如图,⊙O的圆心在坐标原点,⊙O与x轴正半轴交于点B,延长OB至点A使AB=OB,过点A作⊙O的切线AC,切点为C,P为⊙O上一点(不在弧BC上),则cos∠BPC的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•郧县三模)在⊙O中,已知⊙O的直径AB为4,弦AC长为2,弦AD长为2
2
,则∠COD=
30°或150°.
30°或150°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•郧县三模)计算:(-1)0+
1
2
tan45°-2-1+|-
8
|

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•郧县三模)先化简:(
2
2x-3
-
x-1
x2-2x+1
)÷
1
2x-3
,然后从
2
-1
,1,
2
+1
3
2
中选取一个你认为合适的数作为x的值代入求值.

查看答案和解析>>

同步练习册答案