【题目】已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有( )
A.3个B.2个C.1个D.0个
【答案】B
【解析】
首先根据二次函数图象开口方向可得a>0,根据图象与y轴交点可得c<0,再根据二次函数的对称轴x=-,结合图象与x轴的交点可得对称轴为x=1,结合对称轴公式可判断出①的正误;根据对称轴公式结合a的取值可判定出b<0,根据a、b、c的正负即可判断出②的正误;利用a-b+c=0,求出a-2b+4c<0,再利用当x=4时,y>0,则16a+4b+c>0,由①知,b=-2a,得出8a+c>0.
根据图象可得:a>0,c>0,对称轴:.
①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,
∴.∴b+2a=0.故命题①错误.
②∵a>0,,∴b<0.
又c<0,∴abc>0.故命题②错误.
③∵b+2a=0,∴a﹣2b+4c=a+2b﹣4b+4c=﹣4b+4c.
∵a﹣b+c=0,∴4a﹣4b+4c=0.∴﹣4b+4c=﹣4a.
∵a>0,∴a﹣2b+4c=﹣4b+4c=﹣4a<0.故命题③正确.
④根据图示知,当x=4时,y>0,∴16a+4b+c>0.
由①知,b=﹣2a,∴8a+c>0.故命题④正确.
∴正确的命题为:①③三个.
故选B
科目:初中数学 来源: 题型:
【题目】有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度. 图2是支撑杆的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角∠BOD=. 若AO=85cm,BO=DO=65cm. 问: 当,较长支撑杆的端点离地面的高度约为_____.(参考数据:,.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC=2,tanB=3,点D为边AB上一动点,在直线DC上方作∠EDC=∠ECD=∠B,得到△EDC,则CE最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上学习了圆周角的概念和性质:“顶点在圆上,两边与圆相交”,“同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究.
下面是他的探究过程,请补充完整:
定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M为所对的一个圆外角.
(1)请在图2中画出所对的一个圆内角;
提出猜想
(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角______这条弧所对的圆周角;一条弧所对的圆内角______这条弧所对的圆周角;(填“大于”、“等于”或“小于”)
推理证明:
(3)利用图1或图2,在以上两个猜想中任选一个进行证明;
问题解决
经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.
(4)如图3,F,H是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)先化简,再求值:其中,a是方程x2+3x+1=0的根.
(2)已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和(5,0),试求该抛物线的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标:
(3)在抛物线上存在点P(不与C重合),使得△APB的面积与△ACB的面积相等,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.
(1)求证:△ADP≌△ECP;
(2)若BP=nPK,试求出n的值;
(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形的边长.某一时刻,动点从点出发沿方向以的速度向点匀速运动;同时,动点从点出发沿方向以的速度向点匀速运动,问:
(1)经过多少时间,的面积等于矩形面积的?
(2)是否存在时间t,使的面积达到3.5cm2,若存在,求出时间t,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣3x+4.
(1)配方成y=a(x﹣h)2+k的形式;
(2)求出它的图象的开口方向对称轴顶点坐标;
(3)求当y<0时x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com