精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣10),(30).对于下列命题:①b2a=0②abc0③a2b+4c0④8a+c0.其中正确的有(

A.3B.2C.1D.0

【答案】B

【解析】

首先根据二次函数图象开口方向可得a0,根据图象与y轴交点可得c0,再根据二次函数的对称轴x=-,结合图象与x轴的交点可得对称轴为x=1,结合对称轴公式可判断出①的正误;根据对称轴公式结合a的取值可判定出b0,根据abc的正负即可判断出②的正误;利用a-b+c=0,求出a-2b+4c0,再利用当x=4时,y0,则16a+4b+c0,由①知,b=-2a,得出8a+c0

根据图象可得:a0c0,对称轴:

①∵它与x轴的两个交点分别为(﹣10),(30),对称轴是x=1

∴b+2a=0.故命题错误.

②∵a0∴b0

c0∴abc0.故命题错误.

③∵b+2a=0∴a2b+4c=a+2b4b+4c=4b+4c

∵ab+c=0∴4a4b+4c=04b+4c=4a

∵a0∴a2b+4c=4b+4c=4a0.故命题正确.

根据图示知,当x=4时,y0∴16a+4b+c0

知,b=2a∴8a+c0.故命题正确.

正确的命题为:①③三个.

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度. 2是支撑杆的平面示意图,ABCD分别是两根不同长度的支撑杆,夹角∠BOD=. AO=85cmBO=DO=65cm. : ,较长支撑杆的端点离地面的高度约为_____.(参考数据:.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ABAC2tanB3,点D为边AB上一动点,在直线DC上方作∠EDC=∠ECD=∠B,得到EDC,则CE最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上学习了圆周角的概念和性质:顶点在圆上,两边与圆相交同弧所对的圆周角相等,小明在课后继续对圆外角和圆内角进行了探究.

下面是他的探究过程,请补充完整:

定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M所对的一个圆外角.

(1)请在图2中画出所对的一个圆内角;

提出猜想

(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角______这条弧所对的圆周角;一条弧所对的圆内角______这条弧所对的圆周角;(大于等于小于”)

推理证明:

(3)利用图1或图2,在以上两个猜想中任选一个进行证明;

问题解决

经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.

(4)如图3FH是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)先化简,再求值:其中,a是方程x2+3x+10的根.

2)已知抛物线yax2+bx+c的对称轴为x2,且经过点(14)和(50),试求该抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yax2+bx+ca≠0)的对称轴为直线x=﹣1,且抛物线经过A10),C03)两点,与x轴交于点B

1)若直线ymx+n经过BC两点,求直线BC和抛物线的解析式;

2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标:

3)在抛物线上存在点P(不与C重合),使得APB的面积与ACB的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,点PCD的中点,∠BCD=60°,射线APBC的延长线于点E,射线BPDE于点K,点O是线段BK的中点.

1)求证:△ADP≌△ECP

2)若BP=nPK,试求出n的值;

3)作BMAE于点M,作KNAE于点N,连结MONO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形的边长.某一时刻,动点点出发沿方向以的速度向点匀速运动;同时,动点点出发沿方向以的速度向点匀速运动,问:

1)经过多少时间,的面积等于矩形面积的

2)是否存在时间t,使的面积达到3.5cm2,若存在,求出时间t,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yx23x+4

1)配方成yaxh2+k的形式;

2)求出它的图象的开口方向对称轴顶点坐标;

3)求当y0x的取值范围.

查看答案和解析>>

同步练习册答案