精英家教网 > 初中数学 > 题目详情
3.请从以下三个一元二次方程中任选两个,并用适当的方法解这两个方程.
(1)x2+4x-1=0; 
(2)2x2-4x+1=0; 
(3)x(x-3)=15-5x.

分析 (1)采用配方法的一般步骤来解方程;
(2)使用公式法解方程;
(3)采用提公因式法解方程;

解答 解:(1)x2+4x-1=0;
∴x2+4x=1,
∴x2+4x+4=1+4,
∴(x+2)2=5,
∴x+2=±$\sqrt{5}$,
解得x1=-2+$\sqrt{5}$,x2=-2-$\sqrt{5}$.
(2)2x2-4x+1=0,
∵a=2,b=-4,c=1,△=b2-4ac=(-4)2-4×2×1=8>0,
∴x=$\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$=$\frac{4±\sqrt{8}}{2×2}$=1±$\frac{\sqrt{2}}{2}$,
∴x1=1+$\frac{\sqrt{2}}{2}$,x2=1-$\frac{\sqrt{2}}{2}$.
(3)原方程化为x(x-3)+5(x-3)=0,
分解因式得,(x-3)(x+5)=0,
∴x-3=0,x+5=0,
∴x1=3,x2=-5.

点评 本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.下列说法:①相等的弦所对的圆心角相等;②对角线相等的四边形是矩形;③正六边形的中心角为60°;④对角线互相平分且相等的四边形是菱形;⑤计算|$\sqrt{9}$-2|的结果为7;⑥函数y=$\sqrt{x+1}$的自变量x的取值范围是x>-1;⑦$\sqrt{12}$-$\sqrt{27}$的运算结果是无理数.其中正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.求值:某小区有一块长为(3a+b)米,宽为(2a+b)米的长方形地块(如图所示),物业公司计划将中间修建一小型喷泉,然后将周围(阴影部分)进行绿化;
(1)应绿化的面积是多少平方米?
(2)当a=3,b=2时求出应绿化的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,线段BC所在的直线以每秒2个单位的速度,沿与其垂直的方向向上平行移动,设x秒时,该直线在△ABC内部的部分DE的长度为y,试写出y关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.出租车司机小李某天下午的营运全是在靠自己家的东西走向的城中路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:km,不足1公里按1公里计算)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-3,-6,-4,+15
(1)小李将最后一名乘客送到目的地,出租车离自己家多远?在自己家的什么方向?
(2)若汽车耗油量为0.2L/km(升/千米),这天下午接送乘客,出租车共耗油多少升?
(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米3元,问这天下午司机的营业额是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知有理数a,b,c满足abc<0,且a,b,c同号,若x=$\frac{|a|}{a}$+$\frac{|b|}{b}$+$\frac{|c|}{c}$,求代数式-x2+6x-2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如:3=22-12,3就是一个智慧树,在正整数中,从1开始,第2017个智慧数是2692.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.佳润商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示:
AB
进价(万元/套)1.51.2
售价(万元/套)1.651.4
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?
(3)在(2)的条件下,该商场所能获得的最大利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE.
(1)如图1,连接线段BE、CD.求证:BE=CD;
(2)如图2,连接DE交AB于点F.
①EF=FD(填“>”、“<”或“=”);
②请证明你的结论.

查看答案和解析>>

同步练习册答案