精英家教网 > 初中数学 > 题目详情
18、如图,在△ABC中,∠C=90°,AC=12cm,AB=25cm,点D在BC上,DE⊥AB,垂足为E,且DE=DC,则△BED与△AED的面积之比为
13:12
分析:要求△BED与△AED的面积之比,即求BE:AE的值.根据勾股定理易证明AE=AC=12,则BE=13,从而求解.
解答:解:∵∠C=90°,DE⊥AB,DE=DC,
∴根据勾股定理,得AE=AC=12.
又AB=25,
则BE=13.
∴△BED与△AED的面积之比为BE:AE=13:12.
点评:如果两个直角三角形的两条边对应相等,根据勾股定理,则第三边必对应相等;两个等高的三角形的面积比等于它们的底的比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案