精英家教网 > 初中数学 > 题目详情
一次函数y=kx+b满足x=地时,y=-h;x=h时,y=h,则这个一次函数是(  )
A.y=2x+1B.y=-2x+1C.y=2x-1D.y=-2x-1
∵把x=3,y=-x和x=x,y=x代入y=kx+b得:
-x=b
x=k+b

解得:k=2,b=-x,
∴一次函数的解析式是y=2x-x,
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,直线l:y=kx+b(k>0)与y轴相交于点A1,以OA1为边作正方形OA1B1C1,记作第一个正方形;然后延长C1B1与直线相交于点A2,再以C1A2为边作正方形C1A2B2C2,记作第二个正方形;同样延长C2B2与直线相交于点A3,再以C2A3为边作正方形C2A3B3C3,记作第三个正方形;…依此类推,又知B1(1,1),B2(3,2).
(1)求直线l的解析式;
(2)第三个正方形的边长是多少?
(3)试推测第n个正方形的边长为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在梯形ABCO中,OCAB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别是A(8,0),B(8,10),C(0,4).点D(4,7)为线段BC的中点,动点P从O点出发,以每秒1个单位的速度,沿折线OAB的路线运动,运动时间为t秒.
(1)求直线BC的解析式;
(2)设△OPD的面积为s,求出s与t的函数关系式,并指出自变量t的取值范围;
(3)当t为何值时,△OPD的面积是梯形OABC的面积的
3
8

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线MN:y=-x+b与x轴交于点M(4,0),与y轴交于点N,长方形ABCD的边AB在x轴上,AB=2,AD=1.长方形ABCD由点A与点O重合的位置开始,以每秒1个单位长度的速度沿x轴正方向作匀速直线运动,当点A与点M重合时停止运动.设长方形运动的时间为t秒,长方形ABCD与△OMN重合部分的面积为S.
(1)求直线MN的解析式;
(2)当t=1时,请判断点C是否在直线MN上,并说明理由;
(3)请求出当t为何值时,点D在直线MN上;
(4)直接写出在整个运动过程中S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在底面积为100cm2、高为20cm的长方体水槽内放入一个圆柱形烧杯(烧杯本身的质量、体积忽略不计),如图(1)所示,向烧杯中注入流量一定的水,注满烧杯后,继续注水,直至注满水槽为止,(烧杯在水槽中的位置始终不变),水槽中水面上升的高度h与注水时间t之间的函数关系如图(2)所示.
(1)求烧杯的底面积;
(2)若烧杯的高为9cm,求注水的速度及注满水槽所用时间.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y=
1
3
x+b
恰好将矩形OABC分成面积相等的两部分,那么b=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某地区对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=-x+70,y2=2x-38,需求量为0时,即停止供应.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量.
(1)求该药品的稳定价格与稳定需求量.
(2)价格在什么范围内,该药品的需求量低于供应量?
(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,直线l是一次函数y=kx+b的图象.
求:(1)这个函数的解析式;
(2)当x=4时,y的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(北师大版)如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为
2
-1,直线a:y=-x-
2
与坐标轴分别交于A,C两点,点B的坐标为(4,1),⊙B与X轴相切于点M.
(1)求点A的坐标及∠CAO的度数;
(2)⊙B以每秒1个单位长度的速度沿x轴负方向平移,同时,直线a绕点A顺时针匀速旋转.当⊙B第一次与⊙O相切时,直线a也恰好与⊙B第一次相切.问:直线AC绕点A每秒旋转多少度;
(3)如图2,过A,O,C三点作⊙O1,点E是劣弧
AO
上一点,连接EC,EA.EO,当点E在劣弧
AO
上运动时(不与A,O两点重合),
EC-EA
EO
的值是否发生变化?如果不变,求其值;如果变化,说明理由

查看答案和解析>>

同步练习册答案