精英家教网 > 初中数学 > 题目详情

如图,在梯形ABCD中,AB∥DC,过对角线AC的中点O作EF⊥AC,分别交边AB,CD于点E,F,连接CE,AF.
(1)求证:四边形AECF是菱形;
(2)若EF=4,AC⊥BC,四边形AECF的面积为10,求sinB的值.

解:(1)
∵AB∥DC,
∴∠1=∠2,
∵在△CFO和△AEO中,

∴△CFO≌△AEO(AAS),
∴OF=OE,
又∵OA=OC,
∴四边形AECF是平行四边形.
∵EF⊥AC,
∴四边形AECF是菱形.

(2)∵EF⊥AC,AC⊥BC,
∴四边形EFCB是平行四边形,
∴BC=EF=4,
又∵四边形AECF的面积为10,
∴AC=5,
在Rt△ABC中,AB==
则sinB===
分析:(1)运用“对角线互相垂直平分的四边形是菱形”判定,已知EF⊥AC,AO=OC,只需要证明OE=OF即可,用全等三角形得出;
(2)先求出AC,根据AC⊥BC,可得出EFCB是平行四边形,从而可得出BC=EF=4,在Rt△ABC中,可求出sinB的值.
点评:本题考查了梯形的知识,难点在第二问,注意掌握菱形的面积可以用对角线积的一半来表示,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案