精英家教网 > 初中数学 > 题目详情
某汽车销售公司10月份销售某厂家的汽车.在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为30万元;每多售出1部,所有售出的汽车的进价均降低0.2万元/部.
(1)若该公司当月售出2部汽车,则每部汽车的进价为   万元;
(2)如果汽车的售价为31万元/部.
①写出公司当月盈利y(万元)与汽车销售量x(部)之间的函数关系式;
②若该公司当月盈利28万元,求售出汽车的数量.
(1)29.8;(2)①y=0.2x2+0.8x;②10辆

试题分析:(1)根据“当月仅售出1部汽车,则该部汽车的进价为30万元;每多售出1部,所有售出的汽车的进价均降低0.2万元/部”即可求得结果;
(2)①先表示出每部汽车的利润,即可得到盈利y(万元)与汽车销售量x(部)之间的函数关系式;
②把y=28代入①中的函数关系式求解即可,最后要注意舍去不符题意的解.
(1)若该公司当月售出2部汽车,则每部汽车的进价为30-0.2=29.8万元;
(2)①每部汽车的利润为31-[30-0.2(x-1)]=0.2x+0.8
当月盈利y(万元)与汽车销售量x(部)之间的函数关系式是y=(0.2x+0.8)x=0.2x2+0.8x;
②当y=28时,0.2x2+0.8x=28
解这个方程,得x1=-14(不合题意,舍去),x2=10
答:售出汽车的数量为10辆.
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),并且当两直线同时相交于y轴正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l1交于点K,如图所示.

(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的顶点为H,与轴交于A、B两点(B点在A点右侧),点H、B关于直线:对称,过点B作直线BK∥AH交直线于K点.  
                           
(1)求A、B两点坐标,并证明点A在直线上;                        
(2)求此抛物线的解析式;                                          
(3)将此抛物线向上平移,当抛物线经过K点时,设顶点为N,求出NK的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司经销某品牌运动鞋,年销售量为10万双,每双鞋按250元销售,可获利25﹪设每双鞋的成本价为元.

(1)试求的值;
(2)为了扩大销售量,公司决定拿出一定量的资金做广告,根据市场调查,若每年投入广告费为(万元)时,产品的年销售量将是原来年销售量的倍,且之间的关系满足.请根据图象提供的信息,求出之间的函数关系式;
(3)在(2)的条件下求年利润S(万元)与广告费(万元)之间的函数关系式,并请回答广告费(万元)在什么范围内,公司获得的年利润S(万元)随广告费的增大而增多?(注:年利润S=年销售总额-成本费-广告费)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).

(1)求抛物线的解析式;
(2)求点B的坐标及直线BC的解析式;
(3)如图,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,求△BDC的面积的最大值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知b<0时,二次函数的图象如下列四个图之一所示.根据图象分析,a的值等于
A.-2B.-1C.1D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知⊙P的半径为2,圆心P在抛物线上运动,当⊙P与轴相切时,
圆心P的坐标为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商厦将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价50x元,商场每天销售这种冰箱的利润是y元,请写出yx之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A的坐标为(7,0),点B的坐标为(3,4),

(1)求经过O、A、B三点的抛物线解析式;
(2)将线段AB绕A点顺时针旋转75°至AC,直接写出点C的坐标.
(3)在y轴上找一点P,第一象限找一点Q,使得以O、B、Q、P为顶点的四边形是菱形,求出点Q的坐标;
(4)△OAB的边OB上有一动点M,过M作MN//OA交AB于N,将△BMN沿MN翻折得△DMN,设MN=x,△DMN与△OAB重叠部分的面积为y,求出y与x之间的函数关系式,并求出重叠部分面积的最大值.

查看答案和解析>>

同步练习册答案