精英家教网 > 初中数学 > 题目详情
20、已知命题:如图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.
分析:本题中要证△ABC≌△DEF,已知的条件有一组对应边AB=DE(AD=BE),一组对应角∠A=∠FDE.要想证得全等,根据全等三角形的判定,缺少的条件是一组对应角(AAS或ASA),或者是一组对应边AC=EF(SAS).只要有这两种情况就能证得三角形全等.
解答:解:是假命题.
以下任一方法均可:
①添加条件:AC=DF.
证明:∵AD=BE,
∴AD+BD=BE+BD,即AB=DE.
在△ABC和△DEF中,
AB=DE,
∠A=∠FDE,
AC=DF,
∴△ABC≌△DEF(SAS);

②添加条件:∠CBA=∠E.
证明:∵AD=BE,
∴AD+BD=BE+BD,即AB=DE.
在△ABC和△DEF中,
∠A=∠FDE,
AB=DE,
∠CBA=∠E,
∴△ABC≌△DEF(ASA);

③添加条件:∠C=∠F.
证明:∵AD=BE,
∴AD+BD=BE+BD,即AB=DE.
在△ABC和△DEF中,
∠A=∠FDE,
∠C=∠F,
AB=DE,
∴△ABC≌△DEF(AAS).
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、已知命题:“如图,点A、D、B、E在同一条直线上,且AD=BE,AC∥DF,则△ABC≌△DEF.”这个命题是真命题还是假命题?如果是真命题,请给出证明; 如果是假命题,请添加一个适当的条件,使它成为真命题,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•郑州模拟)已知命题:“如图,点B、F、C、E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并加以证明.

查看答案和解析>>

科目:初中数学 来源:2013届江苏省盐城中学九年级中考模拟(5月)数学试卷(带解析) 题型:计算题

已知命题:如图,点ADBE在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏姜堰四校八年级下学期第三次月考数学试卷(带解析) 题型:解答题

已知命题:如图,点A、D、B、E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.

查看答案和解析>>

同步练习册答案