某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:
型号 | A | B |
成本(万元/台) | 200 | 240 |
售价(万元/台) | 250 | 300 |
(1)该厂对这两型挖掘机有哪几种生产方案?
(2)该厂如何生产能获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)
解:(1)设生产A型挖掘机x台,则B型挖掘机(100﹣x)台,
由题意得22400≤200x+240(100﹣x)≤22500,解得37.5≤x≤40。
∵x取非负整数,∴x为38,39,40。
∴有三种生产方案:
①A型38台,B型62台;
②A型39台,B型61台;
③A型40台,B型60台。
(2)设获得利润W(万元),由题意得W=50x+60(100﹣x)=6000﹣10x,
∵﹣10<0,∴W随x的增大而减小。
∴当x=38时,W最大=5620(万元)。
∴生产A型38台,B型62台时,获得最大利润。
(3)由题意得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x
∴当0<m<10,则x=38时,W最大,即生产A型38台,B型62台;
当m=10时,m﹣10=0则三种生产方案获得利润相等;
当m>10,则x=40时,W最大,即生产A型40台,B型60台。
【解析】(1)因为每种型号的成本及总成本的上限和下限都已知,所以设生产A型挖掘机x台,则B型挖掘机(100﹣x)台的情况下,可列不等式22400≤200x+240(100﹣x)≤22500,解不等式,取其整数值即可求解。
(2)在知道生产方案以及每种利润情况下可列函数解析式W=50x+60(100﹣x)=6000﹣10x,利用函数的自变量取值范围和其单调性即可求得函数的最值。
(3)结合(2)得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x,在此,必须把(m﹣10)正负性考虑清楚,即m>10,m=10,m<10三种情况,最终才能得出结论.即怎样安排,完全取决于m的大小。
科目:初中数学 来源: 题型:
型号 | A | B |
成本(万元/台) | 200 | 240 |
售价(万元/台) | 250 | 300 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
型号 | A | B |
成本(万元/台) | 200 | 240 |
售价(万元/台) | 250 | 300 |
查看答案和解析>>
科目:初中数学 来源:2011年江苏省盐城市阜宁县GSJY中考临考适应性考试数学试卷(一)(解析版) 题型:解答题
型号 | A | B |
成本(万元/台) | 200 | 240 |
售价(万元/台) | 250 | 300 |
查看答案和解析>>
科目:初中数学 来源:2011年安徽省马鞍山市中考数学二模试卷(解析版) 题型:解答题
型号 | A | B |
成本(万元/台) | 200 | 240 |
售价(万元/台) | 250 | 300 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com