精英家教网 > 初中数学 > 题目详情

【题目】如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.

(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

【答案】
(1)证明:连接OC,

∵OA=OC,

∴∠OCA=∠OAC,

∵AC平分∠PAE,

∴∠DAC=∠CAO,

∴∠DAC=∠OCA,

∴PB∥OC,

∵CD⊥PA,

∴CD⊥OC,CO为⊙O半径,

∴CD为⊙O的切线


(2)解:过O作OF⊥AB,垂足为F,

∴∠OCD=∠CDA=∠OFD=90°,

∴四边形DCOF为矩形,

∴OC=FD,OF=CD.

∵DC+DA=6,

设AD=x,则OF=CD=6﹣x,

∵⊙O的直径为10,

∴DF=OC=5,

∴AF=5﹣x,

在Rt△AOF中,由勾股定理得AF2+OF2=OA2

即(5﹣x)2+(6﹣x)2=25,

化简得x2﹣11x+18=0,

解得x1=2,x2=9.

∵CD=6﹣x大于0,故x=9舍去,

∴x=2,

从而AD=2,AF=5﹣2=3,

∵OF⊥AB,由垂径定理知,F为AB的中点,

∴AB=2AF=6.


【解析】(1)根据切线的判定方法只要得到CD⊥OC即可;根据等角对等边,得到∠OCA=∠OAC,根据角平分线定义AC平分∠PAE,得到∠DAC=∠CAO,∠DAC=∠OCA,得到PB∥OC,由CD⊥PA,得到CD⊥OC,即CD为⊙O的切线;(2)由辅助线得到四边形DCOF为矩形,根据矩形的性质得到OC=FD,OF=CD,因为⊙O的直径为10,求出DF=OC,AF,在Rt△AOF中,由勾股定理得AF2+OF2=OA2,,从而求出AD,AF的值,由OF⊥AB,由垂径定理知,F为AB的中点,求出AB=2AF即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于的不等式组整数解为12,如果把适合这个不等式组的整数组成有序数对,那么对应在平面直角坐标系上的点共有的个数为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400 m,先到终点的人原地休息.已知甲先出发4 min,在整个步行过程中,甲、乙两人的距离y(m)与甲出发的时间t(min)之间的关系如图所示,以下结论:①甲步行的速度为60 m/min;②乙走完全程用了32 min;③乙用16 min追上甲;④乙到达终点时,甲离终点还有300 m,其中正确的结论有______(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为( )时,△ABE与以D、M、N为顶点的三角形相似.

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.

(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB为⊙O的直径,点C、D在⊙O上.若∠ABD=42°,则∠BCD的度数是( )

A.122°
B.128°
C.132°
D.138°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,

下列结论:
①4ac<b2
②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索研究:已知:△ABC和△CDE都是等边三角形.

(1)如图1,若点A、C、E在一条直线上时,我们可以得到结论:线段AD与BE的数量关系为:   ,线段AD与BE所成的锐角度数为   °;

(2)如图2,当点A、C、E不在一条直线上时,请证明(1)中的结论仍然成立;

灵活运用:

如图3,某广场是一个四边形区域ABCD,现测得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,试求水池两旁B、D两点之间的距离.

查看答案和解析>>

同步练习册答案