A. | ①②③ | B. | ①③④ | C. | ①②④ | D. | ②③④ |
分析 根据角平分线的性质得到DE=DF,根据垂直的定义、等腰三角形的性质判断①;根据线段垂直平分线的判定定理判断②;根据三角形的面积公式判断③,结合题意判断④.
解答 解:∵∠A的平分线交BC于D,DE⊥AC,DF⊥AB,
∴DE=DF,
∴∠DEF=∠DFE,又∠AED=∠AFD=90°,
∴∠AEF=∠AFE,①正确;
∵∠AEF=∠AFE,
∴AE=AF,又DE=DF,
∴AD垂直平分EF,②正确;
S△BFD:S△CED=$\frac{1}{2}$×BF×DF:$\frac{1}{2}$×CE×DE=BF:CE,③正确;
EF与BC不一定平行,④错误,
故选:A.
点评 本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 由-$\frac{1}{3}$x=y,得x=y+$\frac{1}{3}$ | B. | 由5x-2=4x+6,x=4 | ||
C. | 由3x-5=2x,得x=5 | D. | 由x-5=7,得x=7-5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com