【题目】阅读下面内容,并按要求解决问题: 问题:“在平面内,已知分别有个点,个点,个点,5 个点,…,n 个点,其中任意三 个点都不在同一条直线上.经过每两点画一条直线,它们可以分别画多少条直线? ” 探究:为了解决这个问题,希望小组的同学们设计了如下表格进行探究:(为了方便研 究问题,图中每条线段表示过线段两端点的一条直线)
请解答下列问题:
(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为 ;
(2)若某同学按照本题中的方法,共画了条直线,求该平面内有多少个已知点.
科目:初中数学 来源: 题型:
【题目】如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长(精确到1m).
参考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上.
(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1;
(2)画出与△ABC关于原点O对称的△A2B2C2;
(3)△A1B1C1与△A2B2C2关于某个点对称,则这个点的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列一组方程:①,②,③,…小明通过观察,发现了其中蕴含的规律,并顺利地求出了前三个方程的解第①个方程的解为;第②个方程的解为;第③个方程的解为.若n为正整数,且关于x的方程的一个解是,则n的值等于____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y1=x+m的图象与x轴y轴分别交于点A、B,与反比例函数y2=(x<0)的图象分别交于点C、D,且C点的坐标为(﹣1,2).
(1)分别求出一次函数及反比例函数的关系式;
(2)求出点D的坐标并直接写出y1>y2的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】山西汾酒,又称“杏花村酒”.酿造汾酒是选用晋中平原的“一把抓高粱”为原料.汾阳县某村民合作社2016年种植“一把抓高粱”100亩,2018年该合作社扩大了“一把抓高梁”的种植面积,共种植144亩.
(1)求该合作社这两年种植“一把抓高梁”亩数的平均增长率;
(2)某粮店销售“一把抓高粱”售价为13元/斤,每天可售出30斤,每斤的盈利是1.5元.为了减少库存,粮店决定搞促销活动.在销售中发现:售价每降价0.1元,则可多售出2斤.若该粮店某天销售“一把抓高梁”的盈利为40元,则该店当天销售单价降低了多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的三个顶点坐标分别为,,(每个方格的边长均为1个单位长度).
(1)将平移,使点移动到点,请画出;
(2)作出关于点成中心对称的,并直接写出,,的坐标;
(3)与是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数的图象与直线y=kx+b相交于点A、B,点A的坐标为(2,4),直线AB交y轴于点C(0,2),交x轴于点E.
(1)求反比例函数与一次函数的表达式;
(2)求点E、B的坐标;
(3)过点B作BD⊥y轴,垂足为D,连接AD交x轴于点F,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2﹣4ax+b经过点A(1,0),与x轴交于点B,与y轴交于点C,且OB=OC.
(1)求抛物线的解析式;
(2)将△OAC沿AC翻折得到△ACE,直线AE交抛物线于点P,求点P的坐标;
(3)如图2,点M为直线BC上一点(不与B、C重合),连OM,将OM绕O点旋转90°,得到线段ON,是否存在这样的点N,使点N恰好在抛物线上?若存在,求出点N的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com