精英家教网 > 初中数学 > 题目详情
11、给出四个命题:①若a>b,c=d,则ac>bd;②若ac>bc,则a>b;③若a>b,则ac2>bc2;④若ac2>bc2,则a>b.正确的有(  )
分析:根据不等式的基本性质对各选项依次进行判断,找出正确的即可解答.特别注意0的特殊性.
解答:解:①若a>b,c=d,则ac>bd,当c=d≤0时不成立,故错误;
②若ac>bc,则a>b,当c<0时错误;
③若a>b,则ac2>bc2,当c=0时不成立,错误;
④若ac2>bc2,则a>b,正确.
正确的有④1个,
故选A.
点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

给出四个命题:①整系数方程ax2+bx+c=0(a≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程ax2+bx+c=0(a≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程ax2+bx+c=0(a≠0)的根只能是无理数;④若a、b、c均为奇数,则方程ax2+bx+c=0没有有理数根,其中真命题是
 

查看答案和解析>>

科目:初中数学 来源:非常讲解·教材全解全析 数学 九年级下 (配北师大课标) 配北师大课标 题型:022

如图,⊙O1,⊙O2相交于点A、B,现给出四个命题:

(1)若AC是⊙O2的切线且交⊙O1于点C,AD是⊙O1的切线且交⊙O2于点D,则AB2=BC·BD.

(2)连接AB、O1O2,若O1A=15 cm,O2A=20 cm,AB=24 cm,则O1O2=25 cm.

(3)若CA是⊙O1的直径,DA是⊙O2的一条非直径的弦,且点D、B不重合,则C、B、D三点不在同一直线上.

(4)若过点A作⊙O1的切线交⊙O2于点D,直线DB交⊙O1于点C,直线CA交⊙O2于点E,连DE,则DE2=DB·DC.

则正确命题的序号是________(在横线上填上所有正确命题序号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

给出四个命题:①整系数方程ax2+bx+c=0(a≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程ax2+bx+c=0(a≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程ax2+bx+c=0(a≠0)的根只能是无理数;④若a、b、c均为奇数,则方程ax2+bx+c=0没有有理数根,其中真命题是______.

查看答案和解析>>

科目:初中数学 来源:新课标九年级数学竞赛培训第05讲:一元二次方程的整数解(解析版) 题型:填空题

给出四个命题:①整系数方程ax2+bx+c=0(a≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程ax2+bx+c=0(a≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程ax2+bx+c=0(a≠0)的根只能是无理数;④若a、b、c均为奇数,则方程ax2+bx+c=0没有有理数根,其中真命题是   

查看答案和解析>>

同步练习册答案