精英家教网 > 初中数学 > 题目详情
12.已知a、b、c是三角形的三边长,如果满足(a-6)2+(b-8)4+|c-10|=0,则三角形的形状是直角.

分析 先求出a、b、c的值,根据勾股定理的逆定理得出直角三角形即可.

解答 解:∵(a-6)2+(b-8)4+|c-10|=0,
∴a-6=0,b-8=0,c-10=0,
∴a=6,b=8,c=10,
∴a2+b2=c2
∴三角形是直角三角形,
故答案为:直角.

点评 本题考查了勾股定理的逆定理,绝对值、偶次方的非负性的应用,能灵活运用勾股定理的逆定理进行推理是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,AE=DB,BC=EF,BC∥EF,求证:△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在△ABC中,已知BE⊥AC于点E,则以BE为高的三角形是△ABC,△ABE,△BCE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在等边△ABC内有一点P,且PA=2,PB=$\sqrt{3}$,PC=1.
(1)画出将△BPC绕点B逆时针旋转60°后得到的三角形;
(2)求∠BPC的度数;
(3)求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在Rt△ABC中,∠C=90°,M是AB的中点,ME⊥AB交AC于点D,交BC的延长线于点E,求证:CM2=MD•ME.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,如果AE∥BF,CE∥DF,那么△OAC∽△OBD吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.二次函数y=ax2+bx+c满足b2=ac,且x=0时,y=-4,则(  )
A.y最大=-4B.y最小=-4C.y最大=-3D.y最小=-3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知AD、AE分别为△ABC的高和角平分线,∠B=70°,∠C=30°,则∠DAE的度数为20°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若m,n是方程x2+2015x-1=0的两个实数根,则m2n+mn2-mn的值等于2016.

查看答案和解析>>

同步练习册答案