精英家教网 > 初中数学 > 题目详情
20.比x2-4x+1少5x2-x-8的多项式是-4x2-3x+9.

分析 根据题意列出关系式,去括号合并即可得到结果.

解答 解:根据题意得:(x2-4x+1)-(5x2-x-8)=x2-4x+1-5x2+x+8=-4x2-3x+9,
故答案为:-4x2-3x+9

点评 此题考查了整式的加减,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图一,AB=AC,BD、CD分别平分∠ABC和∠ACB.问:(答题时,注意书写整洁)
(1)图一中有几个等腰三角形?(写出来,不需要证明)
(2)过D点作EF∥BC,交AB于E,交AC于F,如图二,图中现在增加了几个等腰三角形,选一个进行证明.
(3)如图三,若将题中的△ABC改为不等边三角形,其他条件不变,图中有几个等腰三角形?(写出来,不需要证明)线段EF与BE、CF有什么关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1,在Rt△ABC中,∠ACB=Rt∠,sin∠B=$\frac{3}{5}$,AB=10,点D以每秒5个单位长度的速度从点B处沿沿射线BC方向运动,点F以相同的速度从点A出发沿边AB向点B运动,当F运动至点B时,点D、E同时停止运动,设点D运动时间为t秒.
(1)用含t的代数式分别表示线段BD和BF的长度.则BD=5t,BF=10-5t.
(2)设△BDF的面积为S,求S关于t的函数表达式及S的最大值.
(3)如图2,以DF为对角线作正方形DEFG.
①在运动过程中,是否存在正方形DEFG的一边恰好落在Rt△ABC的一边上,若存在,求出所有符合条件的t值;若不存在,请说明理由.
②设DF的中点为P,当点F从点A 运动至点B时,请直接写出点P走过的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知直线y=x+1与y轴交于点A,一次函数y=kx+b的图象经过点B(0,-1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n).
(1)则n=2,k=3,b=-1;
(2)求四边形AOCD的面积;
(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?若存在求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,∠ABC=50°,∠ABD=135°,BE平分∠ABC,BE⊥BF,则∠FBD的度数为20°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.下面有3个命题:①同位角相等;②平行于同一直线的两直线互相平行;③平方后等于4的数一定是2.其中②是真命题(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知点C(0,3),抛物线的顶点为A(2,0),与y轴交于点B(0,1),点P是抛物线上的一个动点,过点P作PM⊥x轴于点M.
(1)求抛物线的解析式;
(2)若点F在抛物线的对称轴上,且纵坐标为1,连接PF、PC、CF,求证:对于任意点P,PF与PM的差为常数.
(3)记(2)中的常数为a,若将“使△PCF面积为2a”的点P记作“巧点”,则存在多个“巧点”,且使△PCF的周长最小的点P也是一个“巧点”,请直接写出所有“巧点”的个数,并求出△PCF的周长最小时“巧点”的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.
(1)求线段的比:$\frac{CD}{BC}$,$\frac{EF}{CF}$,$\frac{FB}{AB}$;
(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:2x2+(3y2-xy)-(x2-3xy).

查看答案和解析>>

同步练习册答案