【题目】(1)如图①,△ABC是锐角三角形,高BD,CE相交于点H,找出∠BHC和∠A之间存在何种等量关系;并证明你的结论;
(2)如图②,若△ABC是钝角三角形,∠A>90°,高BD,CE所在的直线相交于点H,请你判断此时(1)中的等量关系是否仍然成立?并说明理由.
【答案】(1)∠BHC=180-∠A;(2)∠BHC=180-∠A.
【解析】试题分析:⑴由题易得∠ A+∠ ACE=90°,∠ ACE+∠DHC=90°,所以∠ A=∠ DHC,由图可知,∠ DHC与∠ BHC互补,故∠ A与∠ BHC互补.
⑵由⑴可知,∠BHC=∠ EAC,由图可知,∠ EAC与∠ BAC互补,所以∠ BHC与∠ BAC互补,故⑴中结论仍然成立.
试题解析:(1)∵BD⊥ AC , ∴ ∠ ADB=90°.
∵ CE⊥ AB , ∴∠ AEC=90°.
∵∠ A+∠ ADB+∠ AEC+∠ DHE=360°,
∴∠ DHE= 360°-(∠ A+∠ ADB+∠ AEC)=360°-(∠ A+90°+90°)=180°-∠ A,
∴ ∠ BHC=∠ DHE=180°-∠ A.
(2) ∵ BD⊥ AC ,∴ ∠ ADH=90°.
∵ CE⊥ AB , ∴ ∠ AEH=90°.
∵ ∠ DAE+∠ ADH+∠ AEH+∠ BHC=360°,
∴ ∠ BHC=360°-(∠ DAE+∠ ADH+∠ AEH)=360°-(∠ DAE+90°+90°)=180°-∠ DAE,
∴ ∠ BHC=180°-∠ A.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,将抛物线y=x2﹣2x﹣1先向上平移3个单位长度,再向左平移2个单位长度,所得的抛物线的解析式是( )
A.y=(x+1)2+1B.y=(x﹣3)2+1C.y=(x﹣3)2﹣5D.y=(x+1)2+2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com