精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠B=90°,AB=6cm,BC=12cm.点P从点A开始,沿AB边向点B 以每秒1cm的速度移动;点Q从点B开始,沿着BC边向点C以每秒2cm的速度移动.如果P,Q 同时出发,问经过几秒钟△PBQ的面积最大?最大面积是多少?

 

【答案】

第3秒钟时△PBQ的面积最大,最大值是9cm2

【解析】

试题分析:设第t秒时,△PBQ的面积为ycm2,先根据路程=速度×时间分别表示出AP、PB、BQ,再根据三角形的面积公式即可得到函数关系式,最后根据二次函数的性质即得结果.

设第t秒时,△PBQ的面积为ycm2.

∵AP=tcm,

∴PB=(6-t)cm;

又BQ=2t.

∴y=PB·BQ=(6-t)·2t=(6-t)t=-t2+6t=-(t-3)2+9,

当t=3时,y有最大值9.

故第3秒钟时△PBQ的面积最大,最大值是9cm2.

考点:二次函数的应用

点评:配方法在二次函数的问题中极为重要,尤其在中考中比较常见,往往出现在中考压轴题中,难度不大,要特别注意.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图△ABC中,AB=3,AC=2,BO平分∠ABC,CO平分∠ACB.DE过点O交AB于D,交AC于E,且DE∥BC.则△ADE周长为
5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图△ABC中,∠C=90°,AC=6,AB=10,D是BC边的中点,以AD上一点O为圆心的圆与AB,BC都相切,则⊙O的半径为(  )
A、
12
7
B、
1
5
C、
5
3
D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南岗区一模)如图△ABC中,DE∥BC,CD、BE交于点F,若DF=1,CF=3,AD=2,则线段BD的长等于
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图△ABC中,∠A=78°,AB=AC,P为△ABC内一点,连BP,CP,使∠PBC=9°,∠PCB=30°,连PA,则∠BAP的度数为
69°
69°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图△ABC中,∠ABC=20°,外角∠ABF的平分线与CA边的延长线交于点D,外角∠EAC的平分线交BC边的延长线于点H,若∠BDA=∠DAB,则∠AHC=(  )度.

查看答案和解析>>

同步练习册答案