精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知点A(0,6),B(b,0),且b<0,CD分别是OAAB的中点,AOB的外角∠DBF的平分线BECD的延长线交于点E.

(1)求证:∠DAODOA

(2)①若b=-8,求CE的长;

②若CE+1,则b=________;

(3)是否存在这样的b值,使得四边形OBED为平行四边形?若存在,请求出此时四边形OBED对角线的交点坐标;若不存在,请说明理由.

【答案】(1)见解析;(2) ①9;②-2;(3)见解析.

【解析】(1)由CD分别为AOAB的中点,得到CDOB.又由OBAO,得到CD垂直平分AO,由垂直平分线的性质即可得到结论.

(2)①由三角形中位线定理得到CD的长,由角平分线的定义和平行线的性质得到∠DEB=∠DBE,从而得到EDBD5,即可得到结论.

②由①得:EC=ED+DC=AB+BO,列方程求解即可得到结论.

(3)由四边形OBED是平行四边形,得OBED.由EDBDAB,得到AB=-2b,于是有(-b)262=(-2b)2,解方程得到b的值,进而得到AB的长.设平行四边形OBED的对角线交点为M,作MHOB于点H,则BMBDAB.由ODDBOB,得到∠DBO60°,∠BMH30°,从而可得到BHMH OH,即可得到结论.

(1)∵CD分别为AOAB的中点,∴CDOB

又∵OBAO,∴CDAC,∴CD垂直平分AO,∴ADOD,∴∠DAO=∠DOA

(2)①∵b=-8,∴OB8,∴CDOB4.易得∠DEB=∠DBE,∴EDBDAB5,∴CECDED459

②由①得:EC=ED+DC=AB+BO,∴,解得:b=-2.故答案为:-2

(3)存在.理由如下:

如图,∵四边形OBED是平行四边形,∴OBED

EDBDAB,∴OBAB

OB=-b,∴AB=-2b,∴(-b)262=(-2b)2,解得:b,∴AB.设平行四边形OBED的对角线交点为M,作MHOB于点H,则BMBDAB×

ODAD,∴ODDBOB,∴∠DBO60°,∴∠BMH30°,∴BHMH,∴OH=,∴M).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(题文)如图,在等腰直角三角形MNC中,CNMN,将MNC绕点C顺时针旋转60°,得到ABC,连接AMBMBMAC于点O.

(1)NCO的度数为________;

(2)求证:CAM为等边三角形;

(3)连接AN,求线段AN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A坐标为(0,3),点B在x轴上
(1)在坐标系中求作一点M,使得点M到点A,点B和原点O这三点的距离相等,在图中保留作图痕迹,不写作法;
(2)若函数y= 的图象经过点M,且sin∠OAB= ,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣ x+4交x轴于点A,交y轴于点C,抛物线y=ax2 x+c过点A,交y轴于点B(0,﹣2)

(1)求抛物线的解析式;
(2)点M为抛物线在第四象限部分上的一个动点,求四边形BMAC面积的最大值;
(3)点D为抛物线对称轴上一点,规定:d=|AD﹣BD|,探究d是否存在最大值?若存在,请直接写出d的最大值及此时点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴的负半轴交于点A,B(点A在点B的右边),与y轴的正半轴交于点C,且OA=OC=1,则下列关系中正确的是(

A.a+b=1
B.b<2a
C.a﹣b=﹣1
D.ac<0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).

1)求出点A、点B运动的速度,并在数轴上标出AB两点从原点出发运动3秒时的位置;

2)若AB两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?

3)若AB两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象经过点(0,﹣3),且顶点坐标为(﹣1,﹣4).
(1)求该二次函数的解析式;
(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上三点A,O,B对应的数分别为﹣5,0,1,点M为数轴上任意一点,其对应的数为x.

请回答问题:

(1)A、B两点间的距离是_____,若点M到点A、点B的距离相等,那么x的值是_____

(2)若点A先沿着数轴向右移动6个单位长度,再向左移动4个单位长度后所对应的数字是 ____ 

(3)当x为何值时,点M到点A、点B的距离之和是8;

(4)如果点M以每秒3个单位长度的速度从点O向左运动时,点A和点B分别以每秒1个单位长度和每秒4个单位长度的速度也向左运动,且三点同时出发,那么几秒种后点M运动到点A、点B之间,且点M到点A、点B的距离相等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+4与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移k个单位,当点C落在EOF的内部时(不包括三角形的边),k的值可能是( )

A.2 B.3 C.4 D.5

查看答案和解析>>

同步练习册答案