精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.

(1)求证:AB是⊙O的切线;
(2)若CD的弦心距为1,BE=EO,求BD的长.
(1)证明见解析;(2).

试题分析:(1)连接OD,如图1所示,由OD=OC,根据等边对等角得到一对角相等,再由∠DOB为△COD的外角,利用三角形的外角等于与它不相邻的两个内角之和,等量代换可得出∠DOB=2∠DCB,又∠A=2∠DCB,可得出∠A=∠DOB,又∠ACB=90°,可得出直角三角形ABC中两锐角互余,等量代换可得出∠B与∠ODB互余,即OD垂直于BD,确定出AB为圆O的切线,得证;
(2)法1:过O作OM垂直于CD,根据垂径定理得到M为DC的中点,由BD垂直于OD,得到三角形BDO为直角三角形,再由BE=OE=OD,得到OD等于OB的一半,可得出∠B=30°,进而确定出∠DOB=60°,又OD=OC,利用等边对等角得到一对角相等,再由∠DOB为三角形DOC的外角,利用外角的性质及等量代换可得出∠DCB=30°,在三角形CMO中,根据30°角所对的直角边等于斜边的一半得到OC=2OM,由弦心距OM的长求出OC的长,进而确定出OD及OB的长,利用勾股定理即可求出BD的长;
法2:过O作OM垂直于CD,连接ED,由垂径定理得到M为CD的中点,又O为EC的中点,得到OM为三角形EDC的中位线,利用三角形中位线定理得到OM等于ED的一半,由弦心距OM的长求出ED的长,再由BE=OE,得到ED为直角三角形DBO斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,由DE的长求出OB的长,再由OD及OB的长,利用勾股定理即可求出BD的长.
试题解析:(1)证明:连接OD,如图1所示:

∵OD=OC,
∴∠DCB=∠ODC,
又∠DOB为△COD的外角,
∴∠DOB=∠DCB+∠ODC=2∠DCB,
又∵∠A=2∠DCB,
∴∠A=∠DOB,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠DOB+∠B=90°,
∴∠BDO=90°,
∴OD⊥AB,
又∵D在⊙O上,
∴AB是⊙O的切线;
(2)解法一:
过点O作OM⊥CD于点M,如图1,
∵OD=OE=BE=BO,∠BDO=90°,
∴∠B=30°,
∴∠DOB=60°,
∵OD=OC,
∴∠DCB=∠ODC,
又∵∠DOB为△ODC的外角,
∴∠DOB=∠DCB+∠ODC=2∠DCB,
∴∠DCB=30°,
∵在Rt△OCM中,∠DCB=30°,OM=1,
∴OC=2OM=2,
∴OD=2,BO=BE+OE=2OE=4,
∴在Rt△BDO中,根据勾股定理得:BD=
解法二:
过点O作OM⊥CD于点M,连接DE,如图2,

∵OM⊥CD,
∴CM=DM,又O为EC的中点,
∴OM为△DCE的中位线,且OM=1,
∴DE=2OM=2,
∵在Rt△OCM中,∠DCB=30°,OM=1,
∴OC=2OM=2,
∵Rt△BDO中,OE=BE,
∴DE=BO,
∴BO=BE+OE=2OE=4,
∴OD=OE=2,
在Rt△BDO中,根据勾股定理得BD=
考点: 1.切线的判定;2.含30度角的直角三角形;3.垂径定理;4圆周角定理.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O分别切△ABC的三条边AB、BC、CA于点D、E、F,S△ABC=10cm2,C△ABC=10cm,且∠C=60°求:

(1)⊙O的半径r;
(2)扇形OEF的面积(结果保留π);
(3)扇形OEF的周长(结果保留π)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连结AD交BC于F,若AC=FC.

(1)求证:AC是⊙O的切线:
(2)若BF=8,DF=,求⊙O的半径r.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,如果将半径为9cm的圆形纸片剪去一个圆周的扇形,用剩下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面圆半径为__________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC的外接圆的圆心坐标为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在10×10的正方形网格中(每个小正方形的边长都为1个单位),△的三个顶点都在格点上.

(1)建立如图所示的直角坐标系,请在图中标出△的外接圆的圆心的位置,并填写:
①圆心的坐标:(_______,_______);
②⊙的半径为_______ .
(2)将△绕点逆时针旋转得到△,画出图形,并求线段扫过的图形的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长是
A.4cmB.6cmC.8cmD.10cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,圆与圆之间不同的位置关系有    (       )
A.2种B.3种C.4种D.5种

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法中不正确的是()
A.若点A在半径为r的⊙O外,则OA<r
B.相切两圆的切点在两圆的连心线上
C.三角形只有一个内切圆
D.相交两圆的连心线垂直平分其公共弦

查看答案和解析>>

同步练习册答案