精英家教网 > 初中数学 > 题目详情

【题目】如图,已知四边形ABCD中,ABDC,连接BD,BE平分∠ABD,BEAD,EBC和∠DCB的角平分线相交于点F,若∠ADC=110°,则∠F的度数为(  )

A. 115° B. 110° C. 105° D. 100°

【答案】D

【解析】

依据四边形BCDE的内角和,可得∠BCD+∠CBE=160°,再根据∠EBC和∠DCB的角平分线相交于点F,可得∠BCF+∠CBF=×160°=80°,进而得出△BCF中,∠F=180°-80°=100°.

解:∵BE⊥AD,

∴∠BED=90°,

又∵∠ADC=110°,

∴四边形BCDE中,∠BCD+∠CBE=360°-90°-110°=160°,

又∵∠EBC和∠DCB的角平分线相交于点F,

∴∠BCF+∠CBF=×160°=80°,

∴△BCF中,∠F=180°-80°=100°,

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点P是不等边△ABC的边BC上的一点,点D在边AB或AC上,若由点P、D截得的小三角形与△ABC相似,那么D点的位置最多有(
A.2处
B.3处
C.4处
D.5处

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PA,PB.
(1)如图①,把△ABP绕点A逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;
(2)如图②,若∠BAC=60°,试探究PA、PB、PC之间的关系.
(3)若∠BAC=120°时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.

提出问题:

(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;

(2)请写出三个代数式(ab)2,(ab)2ab之间的一个等量关系:___________________________;

问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知xy=8,xy=7,求xy的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在Rt△AOB中,点A(1,2),∠OBA=90°,OB在x轴上,将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y= (k>0)上,则k的值为( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AE是高,AF是△ABC外角∠CAD的平分线.
(1)用尺规作图:作∠AEC的平分线EN(保留作图痕迹,不写作法和证明);
(2)设EN与AF交于点M,判断△AEM的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(﹣3,0),二次函数y=ax2+bx+ 的对称轴为直线x=﹣1,其图象过点A与x轴交于另一点B,与y轴交于点C.

(1)求二次函数的解析式,写出顶点坐标;
(2)动点M,N同时从B点出发,均以每秒2个三位长度的速度分别沿△ABC的BA,BC边上运动,设其运动的时间为t秒,当其中一个点到达终点时,另一个点也随之停止运动,连结MN,将△BMN沿MN翻折,若点B恰好落在抛物线弧上的B′处,试求t的值及点B′的坐标;
(3)在(2)的条件下,Q为BN的中点,试探究坐标轴上是否存在点P,使得以B,Q,P为顶点的三角形与△ABC相似?如果存在,请求出点P的坐标;如果不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MAN=15°,AB=BC=CD=DE=EF,则∠FEM=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC是正三角形,曲线CDEF叫做“正三角形的渐开线”,其中 圆心依次按A、B、C…循环,它们依次相连接.若AB=1,则曲线CDEF长是(结果保留π).

查看答案和解析>>

同步练习册答案