精英家教网 > 初中数学 > 题目详情
已知:如图,射线CB∥OA,∠C=∠OAB=120°,OE平分∠COF 交BC于点E,F在BC上,且满足OB平分∠AOF.
(1)求:∠EOB的度数.
(2)探究∠OBC与∠OFC的数量关系,并证明;若向右平移AB,则∠OBC与∠OFC的数量关系是否会发生变化?若发生变化,请直接写出变化的结论.
(3)在向右平移AB的过程中,能否使∠OEC=∠OBA?若存在,求出此时两角相等的度数;若不存在,请说明理由.
考点:平行线的性质
专题:
分析:(1)先根据CB∥OA得出∠AOC+∠C=180°,故可得出∠COA的度数,再由角平分线的定义得出∠1=∠2,∠3=∠4.根据∠COA=∠1+∠2+∠3+∠4=60°可得出∠EOB的度数;
(2)根据BC∥OA可知∠5=∠FOA=∠3+∠4,∠6=∠4,再由∠3=∠4,可得出∠6=∠3,∠5-2∠6,即∠OFC=2∠OBC,故可得出结论;
(3)根据∠OAB=120°,∠COA=60°可知OC∥AB,故∠1+∠2+∠3=∠OBA,同理∠OEC=∠EOA=∠2+∠3+∠4.再由∠OEC=∠OBA,得出∠1=∠4,由∠1=∠2,∠3=∠4可知∠1=
1
4
∠AOC=15°,根据∠OEC=3∠1即可得出结论.
解答:解:(1)∵CB∥OA,
∴∠AOC+∠C=180°(两直线平行,同旁内角互补).
∵∠C=120°(已知),
∴∠COA=60°.  
∵OE平分∠COF (已知),
∴∠1=∠2(角平分线的定义).
同理可得,∠3=∠4.
∵∠COA=∠1+∠2+∠3+∠4=60°,
∴∠2+∠3=
1
2
∠COA=30°,即∠EOB=30°;
     
(2)∠OFC=2∠OBC.
∵BC∥OA,
∴∠5=∠FOA=∠3+∠4,∠6=∠4(两直线平行,内错角相等).
又∵∠3=∠4,
∴∠6=∠3,
∴∠5-2∠6,即∠OFC=2∠OBC.
∴向右平移AB,两个角的数量关系不变.

(3)存在.
∵∠OAB=120°,∠COA=60°,
∴∠OAB+∠COA=180°,
∴OC∥AB(同旁内角互补,两直线平行),
∴∠COB=∠OBA(两直线平行,内错角相等),即∠1+∠2+∠3=∠OBA,
∵BC∥OA,
∴∠OEC=∠EOA=∠2+∠3+∠4(两直线平行,内错角相等).
∵∠OEC=∠OBA,
∴∠1=∠4.
∵∠1=∠2,3=∠4,
∴∠1=
1
4
∠AOC=15°,
∴∠OEC=3∠1=45°.
点评:本题考查的是平行线的性质,熟知平行线的判定定理与性质是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,若AD=1,BC=3,则S△AOD:S△BOC的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算
(1)-15-(-8)+(-11)-12
(2)-4÷
2
3
-(-
2
3
)×(-30)

(3)(-2)2+4×(-3)2-(-4)2÷(-2)
(4)-23+[(-4)2-(1-32)×3]
(5)-
1
3
ab-
1
2
a2+
1
3
a2-(-
2
3
ab)

(6)4x2-[
3
2
x-(
1
2
x-3)+3x2]

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,若∠A=40°,求∠BOC的度数;
(2)若把(1)中∠A=40°这个条件去掉,试探究∠BOC和∠A之间有怎样的数量关系?请写出这个数量关系的推理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正六边形ABCDEF(各边相等,各角相等)中,△DOE可以由
 
平移得到,线段CD可以由
 
平移得到.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知DE∥BC,CD是∠ACB的角平分线,∠B=80°,∠ACB=50°,试求∠EDC与∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在五边形ABCDE中,AE∥BC,探索∠A+∠B与∠C+∠D+∠E的度数之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

方程2-5x=9的解是(  )
A、x=-
5
7
B、x=
11
5
C、x=
5
7
D、x=-
7
5

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个圆锥的侧面展开图为如图所示的弧长为10π的扇形,则这个圆锥的底面半径为(  )
A、πB、5πC、5D、10π

查看答案和解析>>

同步练习册答案