A. | ①③ | B. | ②④ | C. | ①②③ | D. | ①②④ |
分析 根据余角的性质得到∠CAE=∠CBD,等量代换得到∠ABD=∠CBD,根据等腰三角形的判定得到AB=BC,根据等腰三角形的性质得到AD=CD,根据三角形的中位线的性质和直角三角形的性质得到DF=$\frac{1}{2}$BC,EF=$\frac{1}{2}$AB,求得DF=EF,故①正确;根据全等三角形的性质得到BH=AC,等量代换得到CD=$\frac{1}{2}$BH,故②正确;根据相似三角形的性质得到BH•BD=BC•BE,由BC≠2BE,得到BD•BH≠2BE2;故③错误;根据相似三角形的性质得到S△ABC=$\frac{4}{3}$S四边形BCDF.故④正确.
解答 解:∵AE⊥BC,BD⊥AC,
∴∠CAE+∠C=∠CBD+∠C=90°,
∴∠CAE=∠CBD,
∵∠CAE=∠ABD,
∴∠ABD=∠CBD,
∴AB=BC,
∴AD=CD,
∵点F是AB的中点,
∴AF=BF,
∴DF=$\frac{1}{2}$BC,EF=$\frac{1}{2}$AB,
∴DF=EF,故①正确;
∵∠ABC=45°,
∴△ABE是等腰直角三角形,
∴AE=BE,
在△AEC与△BEH中,$\left\{\begin{array}{l}{∠CAE=∠HBE}\\{∠AEC=∠BEH}\\{AE=BE}\end{array}\right.$,
∴△AEC≌△BEH,
∴BH=AC,
∵CD=$\frac{1}{2}$AC,
∴CD=$\frac{1}{2}$BH,故②正确;
∵∠BEH=∠BDC=90°,∠EBH=∠DBC,
∴△BEH∽△BDC,
∴$\frac{BC}{BH}=\frac{BD}{BE}$,
∴BH•BD=BC•BE,
∵BC≠2BE,
∴BD•BH≠2BE2;故③错误;
∵AF=BF,AD=CD,
∴DF∥BC,DF=$\frac{1}{2}$BC,
∴△ADF∽△ABC,
∴$\frac{{S}_{△ADF}}{{S}_{△ABC}}$=$\frac{1}{4}$,
∴S△ABC=$\frac{4}{3}$S四边形BCDF.故④正确.
故选D.
点评 本题考查了全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 22米 | B. | 18米 | C. | 17米 | D. | 13米 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com