£¨2012•»Æʯ£©ÒÑÖª¼×ͬѧÊÖÖвØÓÐÈýÕÅ·Ö±ð±êÓÐÊý×Ö
1
2
£¬
1
4
£¬1µÄ¿¨Æ¬£¬ÒÒͬѧÊÖÖвØÓÐÈýÕÅ·Ö±ð±êÓÐ1£¬3£¬2µÄ¿¨Æ¬£¬¿¨Æ¬ÍâÐÎÏàͬ£®ÏÖ´Ó¼×ÒÒÁ½ÈËÊÖÖи÷ÈÎÈ¡Ò»ÕÅ¿¨Æ¬£¬²¢½«ËüÃǵÄÊý×Ö·Ö±ð¼ÇΪa£¬b£®
£¨1£©ÇëÄãÓÃÊ÷ÐÎͼ»òÁÐ±í·¨ÁгöËùÓпÉÄܵĽá¹û£®
£¨2£©ÏÖÖƶ¨ÕâÑùÒ»¸öÓÎÏ·¹æÔò£ºÈôËùÑ¡³öµÄa£¬bÄÜʹµÃax2+bx+1=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬Ôò³Æ¼×»ñʤ£»·ñÔò³ÆÒÒ»ñʤ£®ÇëÎÊÕâÑùµÄÓÎÏ·¹æÔò¹«Æ½Âð£¿ÇëÄãÓøÅÂÊ֪ʶ½âÊÍ£®
·ÖÎö£º£¨1£©Ê×Ïȸù¾ÝÌâÒâ»­³öÊ÷״ͼ£¬È»ºó¸ù¾ÝÊ÷״ͼ¼´¿ÉÇóµÃËùÓеȿÉÄܵĽá¹û£»
£¨2£©ÀûÓÃÒ»Ôª¶þ´Î·½³Ì¸ùµÄÅбðʽ£¬¼´¿ÉÅж¨¸÷ÖÖÇé¿öϸùµÄÇé¿ö£¬È»ºóÀûÓøÅÂʹ«Ê½Çó½â¼´¿ÉÇóµÃ¼×¡¢ÒÒ»ñʤµÄ¸ÅÂÊ£¬±È½Ï¸ÅÂÊ´óС£¬¼´¿ÉÈ·¶¨ÕâÑùµÄÓÎÏ·¹æÊÇ·ñ¹«Æ½£®
½â´ð£º½â£º£¨1£©»­Ê÷״ͼµÃ£º
¡ß£¨a£¬b£©µÄ¿ÉÄܽá¹ûÓУ¨
1
2
£¬1£©¡¢£¨
1
2
£¬3£©¡¢£¨
1
2
£¬2£©¡¢£¨
1
4
£¬1£©¡¢£¨
1
4
£¬3£©¡¢£¨
1
4
£¬2£©¡¢£¨1£¬1£©¡¢£¨1£¬3£©¼°£¨1£¬2£©£¬
¡à£¨a£¬b£©È¡Öµ½á¹û¹²ÓÐ9ÖÖ£»            ¡­£¨4·Ö£©

£¨2£©¡ßµ±a=
1
2
£¬b=1ʱ£¬¡÷=b2-4ac=-1£¼0£¬´Ëʱax2+bx+1=0ÎÞʵÊý¸ù£¬
µ±a=
1
2
£¬b=3ʱ£¬¡÷=b2-4ac=7£¾0£¬´Ëʱax2+bx+1=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬
µ±a=
1
2
£¬b=2ʱ£¬¡÷=b2-4ac=2£¾0£¬´Ëʱax2+bx+1=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬
µ±a=
1
4
£¬b=1ʱ£¬¡÷=b2-4ac=0£¬´Ëʱax2+bx+1=0ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬
µ±a=
1
4
£¬b=3ʱ£¬¡÷=b2-4ac=8£¾0£¬´Ëʱax2+bx+1=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬
µ±a=
1
4
£¬b=2ʱ£¬¡÷=b2-4ac=3£¾0£¬´Ëʱax2+bx+1=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬
µ±a=1£¬b=1ʱ£¬¡÷=b2-4ac=-3£¼0£¬´Ëʱax2+bx+1=0ÎÞʵÊý¸ù£¬
µ±a=1£¬b=3ʱ£¬¡÷=b2-4ac=5£¾0£¬´Ëʱax2+bx+1=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬
µ±a=1£¬b=2ʱ£¬¡÷=b2-4ac=0£¬´Ëʱax2+bx+1=0ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬¡­£¨2·Ö£©
¡àP£¨¼×»ñʤ£©=P£¨¡÷£¾0£©=
5
9
£¾P£¨ÒÒ»ñʤ£©=
4
9
£¬¡­£¨1·Ö£©
¡àÕâÑùµÄÓÎÏ·¹æÔò¶Ô¼×ÓÐÀû£¬²»¹«Æ½£®¡­£¨1·Ö£©
µãÆÀ£º±¾Ì⿼²éµÄÊÇÓÎÏ·¹«Æ½ÐÔµÄÅжϣ®ÅжÏÓÎÏ·¹«Æ½ÐÔ¾ÍÒª¼ÆËãÿ¸öʼþµÄ¸ÅÂÊ£¬¸ÅÂÊÏàµÈ¾Í¹«Æ½£¬·ñÔò¾Í²»¹«Æ½£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•»Æʯ£©ÈçͼËùʾ£¬ÒÑÖªAµã´Ó£¨1£¬0£©µã³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»³¤µÄËÙ¶ÈÑØ×ÅxÖáµÄÕý·½ÏòÔ˶¯£¬¾­¹ýtÃëºó£¬ÒÔO¡¢AΪ¶¥µã×÷ÁâÐÎOABC£¬Ê¹B¡¢Cµã¶¼ÔÚµÚÒ»ÏóÏÞÄÚ£¬ÇÒ¡ÏAOC=60¡ã£¬ÓÖÒÔP£¨0£¬4£©ÎªÔ²ÐÄ£¬PCΪ°ë¾¶µÄԲǡºÃÓëOAËùÔÚµÄÖ±ÏßÏàÇУ¬Ôòt=
4
3
-1
4
3
-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•»Æʯ£©ÒÑÖª·´±ÈÀýº¯Êýy=
b
x
£¨bΪ³£Êý£©£¬µ±x£¾0ʱ£¬yËæxµÄÔö´ó¶øÔö´ó£¬ÔòÒ»´Îº¯Êýy=x+bµÄͼÏó²»¾­¹ýµÚ¼¸ÏóÏÞ£®£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•»Æʯ£©ÈçͼËùʾ£¬ÒÑÖªÔÚƽÐÐËıßÐÎABCDÖУ¬BE=DF£®ÇóÖ¤£º¡ÏDAE=¡ÏBCF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•»Æʯ£©ÒÑÖªÅ×ÎïÏßC1µÄº¯Êý½âÎöʽΪy=ax2+bx-3a£¨b£¼0£©£¬ÈôÅ×ÎïÏßC1¾­¹ýµã£¨0£¬-3£©£¬·½³Ìax2+bx-3a=0µÄÁ½¸ùΪx1£¬x2£¬ÇÒ|x1-x2|=4£®
£¨1£©ÇóÅ×ÎïÏßC1µÄ¶¥µã×ø±ê£®
£¨2£©ÒÑ֪ʵÊýx£¾0£¬ÇëÖ¤Ã÷x+
1
x
¡Ý2£¬²¢ËµÃ÷xΪºÎֵʱ²Å»áÓÐx+
1
x
=2£®
£¨3£©Èô½«Å×ÎïÏßÏÈÏòÉÏƽÒÆ4¸öµ¥Î»£¬ÔÙÏò×óƽÒÆ1¸öµ¥Î»ºóµÃµ½Å×ÎïÏßC2£¬ÉèA£¨m£¬y1£©£¬B£¨n£¬y2£©ÊÇC2ÉϵÄÁ½¸ö²»Í¬µã£¬ÇÒÂú×㣺¡ÏAOB=90¡ã£¬m£¾0£¬n£¼0£®ÇëÄãÓú¬mµÄ±í´ïʽ±íʾ³ö¡÷AOBµÄÃæ»ýS£¬²¢Çó³öSµÄ×îСֵ¼°SÈ¡×îСֵʱһ´Îº¯ÊýOAµÄº¯Êý½âÎöʽ£®
£¨²Î¿¼¹«Ê½£ºÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÈôP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÔòP£¬QÁ½µã¼äµÄ¾àÀëΪ
(x2-x1)2+(y2-y1)2
£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸