精英家教网 > 初中数学 > 题目详情
如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1)试说明:BP=DP;
(2)如图2,若正方形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请画图用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与正方形PECF的两个顶点连接,使得到的两条线段在正方形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论;
(4)旋转的过程中AP和DF的长度是否相等?若不等,直接写出AP:DF=
 

(5)若正方形ABCD的边长是4,正方形PECF的边长是1.把正方形PECF绕点C按逆时针方向旋转精英家教网的过程中,△PBD的面积是否存在最大值、最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由.
分析:(1)求简单的相等,可证线段所在的三角形全等,即证△ADP≌△ABP即可.
(2)显然BP、PD不会总是相等,例如:当P不在直线AC上时,连接AP,显然∠BAP≠∠DAP,那么△BAP、△DAP不全等,因此BP、PD不会相等.
(3)此题较简单,例如选线段DF、BE,当P位于直线AC上时,显然两者相等;若P不位于直线AC上时,可通过证△BCE≌△DCF来证得所求的结论.
(4)AP、DF显然不相等,图2中,连接AP,证△APC∽△DFC即可.
(5)连接BD,由于BD是定值,那么△PBD面积的大小与P到直线BD的距离有关;因此当△BPD得面积最小或最大时,点P都位于直线AC上,可据此求解.
解答:解:(1)证明:如图1;
∵四边形ABCD是正方形,
∴AB=AD,∠BAP=∠DAP=45°;
又∵AP=AP,
∴△BAP≌△DAP,
∴BP=PD.

(2)BP、PD不会总相等;理由如下:精英家教网
如图2,连接AP;
当P不在直线AC上时,∠BAP≠∠DAP,
∴△BAP与△DAP不全等,故BP≠PD.

(3)选连接DF、BE;
证明:①当P在线段AC上时,由于CF=CE,BC=CD;
则DF=BE=BC-CE=CD-CF;
②当P不在直线AC上时,连接BE、DF;
∵BC=CD、CF=CE、∠BCE=∠DCF(旋转角),
∴△DCF≌△BCE,即BE=DF;
③当P在线段AC的延长线上时,证法同①;
综上可知:连接DF、BE,则DF、BE的长总相等.

(4)连接AP、PC;
∵四边形ABCD、四边形CFPE都是正方形,
CF
CP
=
CD
AC
=
1
2

又∵∠ACP=∠DCF=45°-∠ACF,
∴△ACP∽△DCF,得:AP:DF=
2
:1.

(5)连接BD,由于BD是定值,而P到直线BD的距离随正方形FPEC的旋转而改变,因此△PBD的面积不是定值;
①如图①,当P在线段AC上时,P到直线BD的距离最小,此时△PBD的面积最小;
易知:OC=2
2
,PC=
2
,则OP=OC-PC=
2

∴△PBD的面积:Smin=
1
2
×BD×OP=
1
2
×4
2
×
2
=4;
②如图②,当P在线段AC的延长线上时,P到直线BD的距离最大,此时△PBD的面积最大精英家教网精英家教网
易知此时:OP=OC+CP=3
2

∴△PBD的面积:Smax=
1
2
×BD×OP=
1
2
×4
2
×3
2
=12.
综上可知:△PBD的面积存在最大和最小值;
且最大值为12,最小值为4.
点评:此题主要考查了正方形的性质、图形的旋转变化、全等三角形及相似三角形的判定和性质、三角形面积的计算方法等知识的综合应用能力,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,已知直线y=2x(即直线l1)和直线y=-
12
x+4(即直线l2),l2与x轴相交于点A.点P从原点O出发,向x轴的正方向作匀速运动,速度为每秒1个单位,同时点Q从A点出发,向x轴的负方向作匀速运动,速度为每秒2个单位.设运动了t秒.
(1)求这时点P、Q的坐标(用t表示).
(2)过点P、Q分别作x轴的垂线,与l1、l2分别相交于点O1、O2(如图1).以O1为圆心、O1P为半径的圆与以O2为圆心、O2Q为半径的圆能否相切?若能精英家教网,求出t值;若不能,说明理由.(同学可在图2中画草图)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=
114
时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•淮滨县模拟)如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线的函数解析式;
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=2秒时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湖州)如图1,已知菱形ABCD的边长为2
3
,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(-
3
,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.
(1)求这条抛物线的函数解析式;
(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<
3

①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;
②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图l,已知抛物线经过坐标原点O和x轴上另一点D,顶点的坐标为(2,4).直角三角形ABC的顶点A与点O重合,AC,AB分别在x轴,y轴上,且AC=3,AB=4.
(1)直线BC的解析式为
y=
4
3
x+4
y=
4
3
x+4

(2)求该抛物线的函数关系式;
(3)将直角三角形ABC以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤2),AB边与该抛物线的交点为Q(如图2所示).
①设△CPQ的面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;
②直接写出直线BC与抛物线有唯一的公共点时t的值.

查看答案和解析>>

同步练习册答案