精英家教网 > 初中数学 > 题目详情
2.为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):

(1)根据以上信息回答下列问题:
①求m值.
②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.
③补全条形统计图.
(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.

分析 (1)①根据2小时所占扇形的圆心角的度数确定其所占的百分比,然后根据条形统计图中2小时的人数求得m的值;
②结合周角是360度进行计算;
③求得总人数后减去其他小组的人数即可求得第三小组的人数;
(2)利用众数、中位数的定义及平均数的计算公式确定即可.

解答 解:(1)①∵课外阅读时间为2小时的所在扇形的圆心角的度数为90°,
∴其所占的百分比为$\frac{90}{360}$=$\frac{1}{4}$,
∵课外阅读时间为2小时的有15人,
∴m=15÷$\frac{1}{4}$=60;

②依题意得:$\frac{5}{60}$×360°=30°;

③第三小组的频数为:60-10-15-10-5=20,
补全条形统计图为:


(2)∵课外阅读时间为3小时的20人,最多,
∴众数为 3小时;
∵共60人,中位数应该是第30和第31人的平均数,且第30和第31人阅读时间均为3小时,
∴中位数为3小时;
平均数为:$\frac{10×1+15×2+20×3+10×4+5×5}{60}$=2.75小时.

点评 本题考查了众数、中位数、平均数及扇形统计图和条形统计图的知识,解题的关键是能够结合两个统计图并找到进一步解题的有关信息,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.如图,?ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:
①∠ACD=30°;②S?ABCD=AC•BC;③OE:AC=$\sqrt{3}$:6;④S△OCF=2S△OEF
成立的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:|-2|-2cos60°+($\frac{1}{6}$)-1-(π-$\sqrt{3}$)0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.设点A(a,b)是正比例函数y=-$\frac{3}{2}$x图象上的任意一点,则下列等式一定成立的是(  )
A.2a+3b=0B.2a-3b=0C.3a-2b=0D.3a+2b=0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1-ac,N=(ax0+1)2,则M与N的大小关系正确的为(  )
A.M>NB.M=NC.M<ND.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.若关于x的分式方程$\frac{2x-a}{x-2}=\frac{1}{2}$的解为非负数,则a的取值范围是(  )
A.a≥1B.a>1C.a≥1且a≠4D.a>1且a≠4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“国际象棋”、“音乐舞蹈”和“书法”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整):
选择意向文学鉴赏国际象棋音乐舞蹈书法其他
所占百分比 a 20% b 10% 5%
根据统计图表的信息,解答下列问题:
(1)求本次抽样调查的学生总人数及a、b的值;
(2)将条形统计图补充完整;
(3)若该校共有1300名学生,试估计全校选择“音乐舞蹈”社团的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,折痕与AC边交于点E,分别过点D、E作BC的垂线,垂足为Q、P,称为第1次操作,记四边形DEPQ的面积为S1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,折痕与AC边交于点E1,分别过点D1、E1作BC的垂线,垂足为Q1、P1,称为第2次操作,记四边形D1E1P1Q1的面积为S2;按上述方法不断操作下去…,若△ABC的面积为1,则Sn的值为(  )
A.$\frac{{2}^{2n}-2}{{2}^{2n}}$B.$\frac{{2}^{n}-1}{{2}^{2n-1}}$C.$\frac{{3}^{n}-1}{{2}^{2n}}$D.$\frac{{2}^{n-1}-1}{{2}^{2n}}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.若a>3,化简|a|-|3-a|的结果为(  )
A.3B.-3C.2a-3D.2a+3

查看答案和解析>>

同步练习册答案