精英家教网 > 初中数学 > 题目详情

如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.

(1)求证:BE=CE;

(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.


(1)证明:∵点D是线段BC的中点,

∴BD=CD,

∵AB=AC=BC,

∴△ABC为等边三角形,

∴AD为BC的垂直平分线,

∴BE=CE;

(2)解:∵EB=EC,

∴∠EBC=∠ECB=30°,

∴∠BEC=120°,

在Rt△BDE中,BD=BC=2,∠EBD=30°,

∴ED=BD=

∴阴影部分(扇形)的面积=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


2的相反数是(  )

 

A.

B.

C.

2

D.

﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在△ABC中,∠A=90°,AB=6,AC=8,分别以点B和C为圆心的两个等圆外切,则图中阴影部分面积为  (结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是(  )

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是  

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.

(1)如图1,若m=.

①当OC=2时,求抛物线C2的解析式;

②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;

(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:


小亮和其他5个同学参加百米赛跑,赛场共设1,2,3,4,5,6六个跑道,选手以随机抽签的方式确定各自的跑道.若小亮首先抽签,则小亮抽到1号跑道的概率是(  )

 

A.

B.

C.

D.

1

查看答案和解析>>

科目:初中数学 来源: 题型:


如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.

(1)证明△COF是等腰三角形,并求出CF的长;

(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?

查看答案和解析>>

科目:初中数学 来源: 题型:


已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为(  )

 

A.

7

B.

8

C.

6或8

D.

7或8

查看答案和解析>>

同步练习册答案