分析 (1)①先任作射线,在射线上截取AC=b,接着过点C作AC的垂线,然后在垂线上截取CB=a,从而得到Rt△ABC;
②利用基本作图(作已知线段的垂直平分线)作出DE;
(2)先根据线段垂直平分线的性质定理得到DA=DB,则∠DBA=∠A=38°,再根据三角形外角性质计算出∠CDB,然后利用互余计算∠CBD的度数;
(3)先利用勾股定理得到AB=5,则AE=$\frac{1}{2}$AB=$\frac{5}{2}$,再证明Rt△ADE∽Rt△ABC,然后利用相似比求DE的长.
解答 解:(1)①如图,△ABC为所作;
②如图,BD为所作;
(2)∵DE垂直平分AB,
∴DA=DB,
∴∠DBA=∠A=38°,
∴∠CDB=∠DBA+∠A=76°,
∴∠CBD=90°-76°=14°;
(3)在Rt△ABC中,AB=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴AE=$\frac{1}{2}$AB=$\frac{5}{2}$,
∵∠EAD=∠CAB,
∴Rt△ADE∽Rt△ABC,
∴DE:BC=AE:AC,即DE:3=$\frac{5}{2}$:4,
∴DE=$\frac{15}{8}$.
点评 本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).利用勾股定理和相似比可解决几何计算问题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
A型 | B型 | |
价格(万元/台) | m | n |
处理污水量(吨/月) | 250 | 200 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com