【题目】如图,已知在△ABC中,∠ACB=90°,AC=4,BC=8,点P是射线AC上一点(不与点A、C重合),过P作PM⊥AB,垂足为点M,以M为圆心,MA长为半径的⊙M与边AB相交的另一个交点为点N,点Q是边BC上一点,且CQ=2CP,联结NQ.
(1)如果⊙M与直线BC相切,求⊙M的半径长;
(2)如果点P在线段AC上,设线段AP=x,线段NQ=y,求y关于x的函数解析式及定义域;
(3)如果以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,求线段AP的长.
【答案】(1);(2)(0<x<4);(3)或.
【解析】
(1)先根据勾股定理求得,设⊙M的半径长为R,则,过M作MH⊥BC,垂足为点H,根据相似三角形的对应边成比例得到,最后根据⊙M与直线BC相切,即MA=MH,即可求解;
(2)设AP=x,得到CP=4﹣x,CQ=8﹣2x,BQ=2x,过Q作QG⊥AB,垂足为点G,根据三角函数可得,根据PM⊥AB,,得到,最后在Rt△QNG中,根据勾股定理即可求解;
(3)当点P在线段AC上,设以NQ为直径的⊙O与⊙M的另一个交点为点E,连接EN,MO,则MO⊥EN,根据以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,PM⊥AB,MA=MN,得到PN=PA,∠PAN=∠ANE,再根据∠ACB=90°,得到∠PAN+∠B=90°,∠NMO=∠B,连接AQ,根据 M、O分别是线段AN、NQ的中点,得到MO∥AQ,∠NMO=∠BAQ,∠BAQ=∠B, QA=QB,在Rt△QAC中,根据勾股定理得,QA2=AC2+QC2即可求解;当点P在线段AC的延长上,即.
(1)解:如图1,
在Rt△ABC中,
∵∠ACB=90°,AC=4,BC=8,
∴
设⊙M的半径长为R,则
过M作MH⊥BC,垂足为点H,
∴MH∥AC,
∵MH∥AC,
∴△BHM∽△BCA,
∴
∵⊙M与直线BC相切,
∴MA=MH,
∴
∴,
即的半径长为;
(2)如图2,
∵AP=x,
∴CP=4﹣x,
∵CQ=2CP,
∴CQ=8﹣2x,
∴BQ=BC﹣CQ=8﹣(8﹣2x)=2x,
过Q作QG⊥AB,垂足为点G,
∵,
∴,
∴
同理:
∵PM⊥AB,
∴∠AMP=90°,
∴
∵AP=x,
∴
∴
在Rt△QNG中,根据勾股定理得,QN2=NG2+QG2,
∴
∴(0<x<4);
(3)当点P在线段AC上,如图3,
设以NQ为直径的⊙O与⊙M的另一个交点为点E,连接EN,MO,
则MO⊥EN,
∴∠NMO+∠ANE=90°,
∵以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,
即P、E、N在同一直线上,
又∵PM⊥AB,MA=MN,
∴PN=PA,
∴∠PAN=∠ANE,
∵∠ACB=90°,
∴∠PAN+∠B=90°,
∴∠NMO=∠B,
连接AQ,
∵M、O分别是线段AN、NQ的中点,
∴MO∥AQ,
∴∠NMO=∠BAQ,
∴∠BAQ=∠B,
∴QA=QB,
在Rt△QAC中,根据勾股定理得,QA2=AC2+QC2,
∴(2x)2=42+(8﹣2x)2,
∴
同理:当点P在线段AC的延长上,
即线段AP的长为或.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D在边BC上,联结AD,以AD为一边作△ADE,满足AD=AE,∠DAE=∠BAC,联结EC.
(1)求证:CA平分∠DCE;
(2)如果AB2=BDBC,求证:四边形ABDE是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中A为直线y=x﹣1上一点,过原点O的直线与反比例函数y=﹣图象交于点B,C.若△ABC为等边三角形,则点A的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平行四边形ABCD中,AB=10,BC=15,tan∠A=,点P是边AD上一点,联结PB,将线段PB绕着点P逆时针旋转90°得到线段PQ,如果点Q恰好落在平行四边形ABCD的边上,那么AP的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.
(1)小明从中随机抽取一张卡片是足球社团B的概率是 .
(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,二次函数y=ax2﹣4ax+3的图象与x轴正半轴交于点A、B,与y轴相交于点C,顶点为D,且tan∠CAO=3.
(1)求这个二次函数的解析式;
(2)点P是对称轴右侧抛物线上的点,联结CP,交对称轴于点F,当S△CDF:S△FDP=2:3时,求点P的坐标;
(3)在(2)的条件下,将△PCD沿直线MN翻折,当点P恰好与点O重合时,折痕MN交x轴于点M,交y轴于点N,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com