精英家教网 > 初中数学 > 题目详情
19.已知$\sqrt{x-\frac{1}{2}}$+|y-3|+(z+8)2=0,求zxy的值.

分析 直接利用绝对值以及偶次方的性质和二次根式的性质得出x,y,z的值,进而得出答案.

解答 解:∵$\sqrt{x-\frac{1}{2}}$+|y-3|+(z+8)2=0,
∴x=$\frac{1}{2}$,y=3,z=-8,
∴zxy=(-8)×($\frac{1}{2}$)3=-1.

点评 此题主要考查了偶次方的性质以及绝对值的性质和二次根式的性质,正确得出x,y,z的值是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.下列选项中正确的是(  )
A.$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$B.$\frac{2x{y}^{2}}{4{x}^{2}y}$=$\frac{1}{2}$C.$\frac{n}{m}$=$\frac{n-a}{m-a}$D.若a>0,则$\sqrt{a^2}=a$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.劝于平面内任意两点P1(x1,y1)、P2(x2,y2),我们规定|x1-x2|+|y1+y2|为点P1、P2的“直角距离”.已知点C是直线y=x+3上的一个动点,点D的坐标是(0,1),当CD与直线y=x+3垂直时,点C与点D的“直角距离”是4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.$\sqrt{{x}^{2}+{y}^{2}-2xy-14x+14y+49}$+$\frac{1}{5}$$\sqrt{2x-3y+5}$=0,试求x2-y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.求x和y的值:
(1)$\sqrt{{x}^{2}-16}$+$\sqrt{13-y}$=0;
(2)(x-2y)2+$\sqrt{2x-3y-1}$=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.若直线y1=m2x+a与直线y2=-2x+b的交点坐标为(1,2),则使y1<y2成立的x的取值范围为(  )
A.x>1B.x>2C.x<1D.x<2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示,已知在直角坐标系中,点B(3,1),过点B作AB∥x轴,交直线y=x于点A,作BC⊥x轴于点C.动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)连接AC、QC,当t为何值时,CQ平分∠ACO?
(4)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知在平面直角坐标系中,x轴上依次有点A1(2,0),A2(4,0),A3(6,0),…,抛物线l1:y=x2+bx+c经过原点及A1,顶点为B1;抛物线l2经过B1和A1,且形状与抛物线l1的形状相同,开口方向相反;抛物线l3经过A1和A2,且形状与抛物线l2的形状相同,开口方向相反,顶点为B2:抛物线l4经过B2和A2,且形状与抛物线l3的形状相同,开口方向相反:抛物线l5经过A2和A3,且形状与抛物线l4的形状相同,开口方向相反,顶点为B3:依此类推…
(1)直接写出B1的坐标;
(2)求出抛物线l2的函数解析式.
(3)根据你探索的规律,写出抛物线ln的函数解析式;
(4)如果将这些抛物线的顶点顺次连接起来,那么每两条相邻的线段存在什么样的关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.求不等式组$\left\{\begin{array}{l}{x-1≥1-x}\\{x+8>4x-1}\end{array}\right.$的解集,并判断x=$\frac{\sqrt{5}}{2}$是否为该不等式组的一个解.

查看答案和解析>>

同步练习册答案