A. | (4n-1,$\sqrt{3}$) | B. | (2n-1,$\sqrt{3}$) | C. | (4n+1,$\sqrt{3}$) | D. | (2n+1,$\sqrt{3}$) |
分析 首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,$\sqrt{3}$),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出An的坐标的规律,求出A2n+1的坐标是多少即可.
解答 解:∵△OA1B1是边长为2的等边三角形,
∴A1的坐标为(1,$\sqrt{3}$),B1的坐标为(2,0),
∵△B2A2B1与△OA1B1关于点B1成中心对称,
∴点A2与点A1关于点B1成中心对称,
∵2×2-1=3,2×0-$\sqrt{3}$=-$\sqrt{3}$,
∴点A2的坐标是(3,-$\sqrt{3}$),
∵△B2A3B3与△B2A2B1关于点B2成中心对称,
∴点A3与点A2关于点B2成中心对称,
∵2×4-3=5,2×0-(-$\sqrt{3}$)=$\sqrt{3}$,
∴点A3的坐标是(5,$\sqrt{3}$),
∵△B3A4B4与△B3A3B2关于点B3成中心对称,
∴点A4与点A3关于点B3成中心对称,
∵2×6-5=7,2×0-$\sqrt{3}$=-$\sqrt{3}$,
∴点A4的坐标是(7,-$\sqrt{3}$),
…,
∵1=2×1-1,3=2×2-1,5=2×3-1,7=2×3-1,…,
∴An的横坐标是2n-1,A2n+1的横坐标是2(2n+1)-1=4n+1,
∵当n为奇数时,An的纵坐标是$\sqrt{3}$,当n为偶数时,An的纵坐标是-$\sqrt{3}$,
∴顶点A2n+1的纵坐标是$\sqrt{3}$,
∴△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,$\sqrt{3}$).
故选:C.
点评 此题主要考查了坐标与图形变化-旋转问题,要熟练掌握,解答此题的关键是分别判断出An的横坐标、纵坐标各是多少.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 14 | B. | 15 | C. | 16 | D. | 17 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com