【题目】如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.
(1)求该抛物线的函数解析式;
(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.
(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2+2x+3;(2)点D(1,4)或(2,3);(3)当点P在x轴上方时,点P(,);当点P在x轴下方时,点(﹣,﹣)
【解析】
(1)c=3,点B(3,0),将点B的坐标代入抛物线表达式:y=ax2+2x+3,解得a=﹣1即可得出答案;
(2)由S△COF:S△CDF=3:2得OF:FD=3:2,由DH∥CO得CO:DM=3:2,求得DM=2,而DM==2,即可求解;
(3)分点P在x轴上方、点P在x轴下方两种情况,分别求解即可.
(1) ∵OB=OC=3,
∴点C的坐标为C(0,3),c=3,点B的坐标为B(3,0),
将点B的坐标代入抛物线表达式:y=ax2+2x+3,解得:a=﹣1,
故抛物线的表达式为:y=﹣x2+2x+3;
(2)如图,过点D作DH⊥x轴于点H,交BC于点M,
∵S△COF:S△CDF=3:2,
∴OF:FD=3:2,
∵DH∥CO,
∴CO:DM= OF:FD=3:2,
∴DM=CO=2,
设直线BC的表达式为:,
将C(0,3),B(3,0)代入得,
解得:,
∴直线BC的表达式为:y=﹣x+3,
设点D的坐标为(x,﹣x2+2x+3),则点M(x,﹣x+3),
∴DM==2,
解得:x=1或2,
故点D的坐标为:(1,4)或(2,3);
(3)①当点P在x轴上方时,
取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,
则∠OBP=2∠OBE,过点G作GH⊥BM,如图,
∵点E的坐标为(0,),
∴OE=,
∵∠GBM=∠GBO,GH⊥BM,GO⊥OB,
∴GH= GO=OE=,BH=BO=3,
设MH=x,则MG=,
在△OBM中,OB2+OM2=MB2,即,
解得:x=2,
故MG==,则OM=MG+ GO=+,
点M的坐标为(0,4),
设直线BM的表达式为:,
将点B(3,0)、M(0,4)代入得:,
解得:,
∴直线BM的表达式为:y=x+4,
解方程组
解得:x=3(舍去)或,
将x=代入 y=x+4得y=,
故点P的坐标为(,);
②当点P在x轴下方时,如图,过点E作EN⊥BP,直线PB交y轴于点M,
∵∠OBP=2∠OBE,
∴BE是∠OBP的平分线,
∴EN= OE=,BN=OB=3,
设MN=x,则ME=,
在△OBM中,OB2+OM2=MB2,即,
解得:,
∴,则OM=ME+ EO=+,
点M的坐标为(0,-4),
设直线BM的表达式为:,
将点B(3,0)、M(0,-4)代入得:,
解得:,
∴直线BM的表达式为:,
解方程组
解得:x=3(舍去)或,
将x=代入得,
故点P的坐标为(,);
综上,点P的坐标为:(,)或(,) .
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点(A在B的左侧),与y轴交于点C,抛物线的顶点为D,抛物线的对称轴与直线AB交于点M.
(1)当四边形CODM是菱形时,求点D的坐标;
(2)若点P为直线OD上一动点,求△APB的面积;
(3)作点B关于直线MD的对称点B',以点M为圆心,MD为半径作⊙M,点Q是⊙M上一动点,求QB'+QB的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinα=cosβ;③;④.其中正确的结论有____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义: 在平面直角坐标系中,如果点和都在某函数的图象上,则称点是图象的一对“相关点”.例如,点和点是直线的一对相关点.
请写出反比例函数的图象上的一对相关点的坐标;
如图,抛物线的对称轴为直线,与轴交于点.
求抛物线的解析式:
若点是抛物线上的一对相关点,直线与轴交于点,点为抛物线上之间的一点,求面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形EFGH的四个顶点分别在矩形ABCD的各条边上,AB=EF,FG=2,GC=3.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形EFGH的面积是4.其中一定成立的是______.(把所有正确结论的序号填在横线上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.
(1)求支点D到滑轨MN的距离(精确到1厘米);
(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据:≈1.41,≈1.73,≈2.45,≈2.65)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.
(1)如果cos∠DBC,求EF的长;
(2)当点F在边BC上时,连接AG,设AD=x,y,求y关于x的函数关系式并写出x的取值范围;
(3)连接CG,如果△FCG是等腰三角形,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.
小新根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小新的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y(cm) | 0 | 1.0 | 2.0 | 3.0 | 2.7 | 2.7 | m | 3.6 |
经测量m的值是(保留一位小数).
(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论
①2a+c>0;
②若在抛物线上,则y1>y2>y3
③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;
④当n=﹣时,△ABP为等腰直角三角形;
其中正确结论个数有( )个.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com