精英家教网 > 初中数学 > 题目详情
(2012•孝感)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A(-1,0),B(3,0),C(0,3).
(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;
(3)若P为抛物线在第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为
(2,3)
(2,3)
时,四边形PQAC是平行四边形;当点P的坐标为
11
4
15
16
11
4
15
16
时,四边形PQAC是等腰梯形(直接写出结果,不写求解过程).
分析:(1)利用待定系数法求出抛物线的解析式,然后化为顶点式求出D点坐标;
(2)本问关键是求出四边形PMAC面积的表达式,这个表达式是关于P点横坐标的二次函数,再利用二次函数求极值的方法求出面积的最大值,并求出P点坐标;
(3)四边形PQAC为平行四边形或等腰梯形时,需要结合几何图形的性质求出P点坐标:
①当四边形PQAC为平行四边形时,如答图1所示.构造全等三角形求出P点的纵坐标,再利用P点与C点关于对称轴x=1对称的特点,求出P点的横坐标;
②当四边形PQAC为平行四边形时,如答图2所示.利用等腰梯形、平行四边形、全等三角形以及线段之间的三角函数关系,求出P点坐标.注意三角函数关系部分,也可以用相似三角形解决.
解答:解:(1)∵抛物线y=ax2+bx+c过点C(0,3)
∴当x=0时,c=3.
又∵抛物线y=ax2+bx+c过点A(-1,0),B(3,0)
0=a-b+3
0=9a+3b+3
,解得
a=-1
b=2

∴抛物线的解析式为:y=-x2+2x+3
又∵y=-x2+2x+3,y=-(x-1)2+4
∴顶点D的坐标是(1,4).

(2)设直线BD的解析式为y=kx+n(k≠0)
∵直线y=kx+n过点B(3,0),D(1,4)
0=3k+n
4=k+n
,解得
k=-2
n=6

∴直线BD的解析式:y=-2x+6
∵P点在线段BD上,因此,设点P坐标为(m,-2m+6)
又∵PM⊥x轴于点M,∴PM=-2m+6,OM=m
又∵A(-1,0),C(0,3)∴OA=1,OC=3
设四边形PMAC面积为S,则
S=
1
2
OA•OC+
1
2
(PM+OC)•OM=
1
2
×1×3+
1
2
(-2m+6+3)•m
=-m2+
9
2
m+
3
2
=-(m-
9
4
2+
105
16

∵1
9
4
3
∴当m=
9
4
时,四边形PMAC面积的最大值为
105
16

将x=
9
4
代入y=-2x+6 解得y=
3
2

此时,P点坐标是(
9
4
3
2
).

(3)答案:(2,3);(
11
4
15
16
).
*注:以下给出解题简要过程,原题并无此要求******
①四边形PQAC是平行四边形,如右图①所示.
过点P作PE⊥x轴于点E,易证△AOC≌△QEP,∴yP=PE=CO=3.
又CP∥x轴,则点C(0,3)与点P关于对称轴x=1对称,∴xP=2.
∴P(2,3).
②四边形PQAC是等腰梯形,如右图②所示.
设P(m,n),P点在抛物线上,则有n=-m2+2m+3.
过P点作PE⊥x轴于点E,则PE=n.
在Rt△OAC中,OA=1,OC=3,∴AC=
10
,tan∠CAO=3,cos∠CAO=
10
10

∵PQ∥CA,∴tan∠PQE=
PE
QE
=tan∠CAO=3,
∴QE=
1
3
n,PQ=
QE2+PE2
=
10
3
n.
过点Q作QM∥PC,交AC于点M,则四边形PCMQ为平行四边形,△QAM为等腰三角形.再过点Q作QN⊥AC于点N.
则有:CM=PQ=
10
3
n,AN=
1
2
AM=
1
2
(AC-CM)=
10
2
(1-
1
3
n),
AQ=
AN
cos∠CAO
=
10
2
(1-
1
3
n)
10
10
=5(1-
1
3
n).
又AQ=AO+OQ=1+(m-
1
3
n),
∴5(1-
1
3
n)=1+(m-
1
3
n),化简得:n=3-
3
4
m;
又P点在抛物线上,有n=-m2+2m+3,
∴-m2+2m+3=3-
3
4
m,化简得:m2-
11
4
m=0,解得m1=0(舍去),m2=
11
4

∴m=
11
4
,n=3-
3
4
m=
15
16

∴P(
11
4
15
16
).
点评:本题综合考查了诸多重要的知识点,包括:二次函数的图象与性质、待定系数法、二次函数的极值、图形面积的求法、等腰梯形、平行四边形、等腰三角形、三角函数(或相似三角形)等,涉及考点众多,有一定的难度.本题难点在于第(3)问等腰梯形的情形,注意该种情形下求点的坐标的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•孝感)如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.
(1)求证:CD是⊙O的切线;
(2)若AD=4,BC=9,求⊙O的半径R.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•孝感)如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•孝感)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2,则AD的长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•孝感)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=
3
4
AB2
其中正确的结论有(  )

查看答案和解析>>

同步练习册答案