精英家教网 > 初中数学 > 题目详情
15.如图,在?ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.
(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;
(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.

分析 (1)证出∠A=90°即可;
(2)由HL证明Rt△CDQ≌Rt△CPQ,得出DQ=PQ,设AQ=x,则DQ=PQ=6-x,由勾股定理得出方程,解方程即可.

解答 (1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,
又∠BPC=∠AQP,
∴∠CPQ=∠A,
∵PQ⊥CP,
∴∠A=∠CPQ=90°,
∴四边形ABCD是矩形;
(2)解:∵四边形ABCD是矩形
∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,$\left\{\begin{array}{l}{CQ=CQ}\\{CD=CP}\end{array}\right.$,
∴Rt△CDQ≌Rt△CPQ(HL)),
∴DQ=PQ,
设AQ=x,则DQ=PQ=6-x
在Rt△APQ中,AQ2+AP2=PQ2
∴x2+22=(6-x)2
解得:x=$\frac{8}{3}$
∴AQ的长是$\frac{8}{3}$.

点评 本题考查了平行四边形的性质、矩形的判定与性质,三角形全等的判定和性质,勾股定理的应用等知识;熟练掌握平行四边形的性质,证明四边形是矩形是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.某校有21名同学参加比赛,预赛成绩各不相同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需再知道这21名同学成绩的(  )
A.中位数B.众数C.平均数D.最高分

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.因式分解:2x2-2=2(x+1)(x-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)(a+b)(a-b)-(-$\frac{1}{2}$)-2+(π-3.14)0
(2)(2x+3y)2-(2x+y)(2x-y)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:($\sqrt{32}$+3$\sqrt{6}$)÷2$\sqrt{2}$-3$\sqrt{(-\frac{2}{3})^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:$\sqrt{36}$+$\sqrt{3}$-|$\sqrt{3}$-2|+$\root{3}{64}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知抛物线y=ax2-5ax+4经过△ABC的三个顶点,BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴和A、B、C三点的坐标;
(2)写出并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形.若存在,求出所有符合条件的点P坐标;不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:△ACE≌△DBF;
(2)求证:四边形BFCE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,矩形PMON的边OM,ON分别在坐标轴上,且点P的坐标为(-2,3).将矩形PMON绕点O顺时针旋转90°后得到矩形ABCD.
(1)请在图中的直角坐标系中画出旋转后的图形;
(2)若过点P的一条直线恰好将矩形ABCD的面积二等分,求这条直线的解析式.

查看答案和解析>>

同步练习册答案