精英家教网 > 初中数学 > 题目详情
如图△ABC中,∠B=42°,∠DAE=14°,AD、AE分别是△ABC的高和角平分线.求:∠C的度数.
分析:设∠C=x,由AD⊥BC可知,∠CAD=90°-x,则∠EAC=∠DAE+∠CAD=104°-x,AE分别是△ABC的角平分线,则∠BAC=2∠EAC,再由三角形内角和定理,得∠B+∠C+∠BAC=180°,列方程求x.
解答:解:设∠C=x,
∵AD⊥BC,∴∠CAD=90°-x,
则∠EAC=∠DAE+∠CAD=104°-x,
又∵AE分别是△ABC的角平分线,∴∠BAC=2∠EAC,
在△ABC中,∵∠B+∠C+∠BAC=180°,
∴42°+x+2(104°-x)=180°,
解得x=70,即∠C=70°.
点评:本题考查了三角形内角和定理.关键是设未知数,利用三角形内角和定理列方程求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图△ABC中,AB=3,AC=2,BO平分∠ABC,CO平分∠ACB.DE过点O交AB于D,交AC于E,且DE∥BC.则△ADE周长为
5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图△ABC中,∠C=90°,AC=6,AB=10,D是BC边的中点,以AD上一点O为圆心的圆与AB,BC都相切,则⊙O的半径为(  )
A、
12
7
B、
1
5
C、
5
3
D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南岗区一模)如图△ABC中,DE∥BC,CD、BE交于点F,若DF=1,CF=3,AD=2,则线段BD的长等于
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图△ABC中,∠A=78°,AB=AC,P为△ABC内一点,连BP,CP,使∠PBC=9°,∠PCB=30°,连PA,则∠BAP的度数为
69°
69°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图△ABC中,∠ABC=20°,外角∠ABF的平分线与CA边的延长线交于点D,外角∠EAC的平分线交BC边的延长线于点H,若∠BDA=∠DAB,则∠AHC=(  )度.

查看答案和解析>>

同步练习册答案