精英家教网 > 初中数学 > 题目详情
(2012•大兴区一模)阅读下列材料:
小明遇到一个问题:已知:如图1,在△ABC中,∠BAC=120°,∠ABC=40°,试过△ABC的一个顶点画一条直线,将此三角形分割成两个等腰三角形.
他的做法是:如图2,首先保留最小角∠C,然后过三角形顶点A画直线交BC于点D.将∠BAC分成两个角,使∠DAC=20°,△ABC即可被分割成两个等腰三角形.
喜欢动脑筋的小明又继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.
他的做法是:如图3,先画△ADC,使DA=DC,延长AD到点B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB=∠ABC,因为∠CDB=2∠A,所以∠ABC=2∠A.于是小明得到了一个结论:
当三角形中有一个角是最小角的2倍时,则此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.
请你参考小明的做法继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.请直接写出你所探究出的另外两条结论(不必写出探究过程或理由).
分析:(1)当一个角等于另一个角的3倍时,把3倍的角分出一个与较小的角相等,还剩下2倍,再根据三角形的一个外角等于与它不相邻的两个内角的和可得另一个三角形有两个2倍的角,这样就分成了两个等腰三角形;
(2)当一个三角形的两个角互余,则第三个角是直角,把直角分成与另两个角相等的两个角即可.
解答:解:如图1,∠BAC=3∠C,作AD使∠CAD=∠C,
则∠BAD=∠BAC-∠CAD=2∠C,
又∠ADB=∠CAD+∠C=2∠C,
所以,△ACD与△ABD都是等腰三角形;
如图2,∠A+∠B=90°,
则∠ACB=180°-90°=90°,
作CD,使∠ACD=∠A,
则∠BCD=90°-∠ACD=90°-∠A=∠B,
即∠BCD=∠B,
所以,△ACD与△BCD都是等腰三角形.

结论1:当三角形中有一个角是另一个角的3倍时,则此三角形一定可以被过顶点的一条直线分割成两个等腰三角形;
结论2:当三角形中的两个内角互余时,则此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.
点评:本题考查了应用与设计作图,读懂题目提供的材料,明确把一个三角形分成两个等腰三角形的方法是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•大兴区一模)已知:如图,在平行四边形ABCD中,AB=4,AD=7,∠ABC的平分线交AD于点E,则ED的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大兴区一模)若
x+y-3
+(y+2)2=0
,则x-y的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大兴区一模)如图,圆柱底面直径AB、母线BC均为4cm,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短距离(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大兴区一模)分解因式:x4-x2y2=
x2(x+y)(x-y)
x2(x+y)(x-y)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大兴区一模)
9
+2cos60°+(
1
2
)-1-20120

查看答案和解析>>

同步练习册答案