精英家教网 > 初中数学 > 题目详情
二次函数y1=x2-2x-1与反比例函数y2=-
2x
的图象在如图所示的同一坐标系中,请根据如图所提供的信息,比较y1与y2的大小.
分析:先观察图象确定抛物线y1=x2-2x-1和一次函数y2=-
2
x
的交点的横坐标为-1,1,2,即可求出y1>y2y1=y2,y1<y2时,x的取值范围.
解答:解:当x<-1或0<x<1或x>2时,y1>y2
当x=-1或x=1或x=2时,y1=y2;     
当-1<x<0或1<x<2时,y1<y2
点评:此题主要考查了看图象,此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知二次函数y1=x2-2x-3及一次函数y2=x+m.
(1)求该二次函数图象的顶点坐标以及它与x轴的交点坐标;
(2)将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你在图中画出这个新图象,并求出新图象与直线y2=x+m有三个不同公共点时m的值;
(3)当0≤x≤2时,函数y=y1+y2+(m-2)x+3的图象与x轴有两个不同公共点,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y1=x2+bx+c的图象与x轴交于A、B 两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,-3),一次函数y2=mx+n的图象过点A、C.
(1)求二次函数的解析式;
(2)求二次函数的图象与x轴的另一个交点A的坐标;
(3)根据图象写出y2<y1时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y1=x2-(k+2)x+2,y2=x2-kx-2k+2,
(1)若二次函数y1=x2-(k+2)x+2与y轴的交点为A,与x轴的交点为B、C,△ABC的面积S=2
2
,求y1的解析式.
(2)不论k为何值时,二次函数y2=x2-kx-2k+2的图象都过定点,求这个定点坐标;若经过定点和原点的直线与y2中某个二次函数图象相切时,求这个二次函数y2的解析式.
(3)若二次函数y1=x2-(k+2)x+2与x轴的交点为(x1,0)、(x2,0),且x1<x2,二次函数y2=x2-kx-2k+2与x轴的交点为(x3,O)、(x4,0),且x3<x4,当这四个交点相间排列(即x1<x3<x2<x4或x3<x1<x4<x2)时,求k的取值范围.

查看答案和解析>>

同步练习册答案