精英家教网 > 初中数学 > 题目详情
问题背景:
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:s=-x2+
1
2
x
(x>0),利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题:
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题:
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:y=2(x+
1
x
)
(x>0),问题就转化为研究该函数的最大(小)值了.
解决问题:
借鉴我们已有的研究函数的经验,探索函数y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=2(x+
1
x
)
(x>0)的图象:
x1/41/31/21234
y
17
2
20
3
545
20
3
17
2
(2)观察猜想:观察该函数的图象,猜想当x=______时,函数y=2(x+
1
x
)
(x>0)有最______值(填“大”或“小”),是______.
(3)推理论证:问题背景中提到,通过配方可求二次函数s=-x2+
1
2
x
(x>0)的最大值,请你尝试通过配方求函数y=2(x+
1
x
)
(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,x=(
x
)2
(1)当x=
1
4
时,y=2×(
1
4
+4)=
17
2

当x=
1
3
时,y=2×(
1
3
+3)=
20
3

当x=
1
2
时,y=2×(
1
2
+2)=5,
当x=1时,y=2×(1+1)=4,
当x=2时,y=2×(2+
1
2
)=5,
当x=3时,y=2×(3+
1
3
)=
20
3

当x=4时,y=2×(4+
1
4
)=
17
2

函数图象如右图:

(2)由(1)的计算结果和函数图象知:当x=1时,y=2(x+
1
x
)有最小值,且最小值为4.

(3)证明:∵x>0,且x=(
x
2
∴y=2(x+
1
x
)=2[(
x
2-2+(
1
x
2]+4=2(
x
-
1
x
2+4;
∴当
x
=
1
x
,即x=1时,函数y=2(x+
1
x
)有最小值,且最小值为4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在同一坐标系内,二次函数的图象与两坐标轴分别交于点A(-1,0),点B(2,0)和点C(0,4),一次函数的图象与抛物线交于B,C两点.
(1)二次函数的解析式为______;
(2)当自变量x______时,两函数的函数值都随x增大而减小;
(3)当自变量x______时,一次函数值大于二次函数值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象如图所示.
(1)求二次函数的解析式及抛物线顶点M的坐标;
(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t的取值范围;
(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;
(4)将△OAC补成矩形,使上△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=a(x+2)2+c与x轴交于A、B两点,与y轴负半轴交于点C,已知点A(-1,0),OB=OC.
(1)求此抛物线的解析式;
(2)若点M是抛物线上一个动点,且S△BCM=S△ABC,求点M的坐标;
(3)Q为直线y=-x-4上一点,在此抛物线的对称轴是否存在一点P,使得∠APB=2∠AQB,且这样的Q点有且只有一个?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知抛物线y=ax2+bx-2经过(2,1)和(6,-5)两点.
(1)求抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,点P是在直线x=4右侧的此抛物线上一点,过点P作PM⊥x轴,垂足为M.若以A、P、M为顶点的三角形与△OCB相似,求点P的坐标;
(3)点E是直线BC上的一点,点F是平面内的一点,若要使以点O、B、E、F为顶点的四边形是菱形,请直接写出点F的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某瓜果基地市场部为指导该基地种植某蔬菜的生产和销售,在对历年市场行情和生产情况进行调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行预测,提供了两个方面的信息,如图所示,请你根据图象提供的信息说明:
(1)在3月从份出售这种蔬菜,每千克的收益是多少元?
(2)哪个月出售这种蔬菜,每千克的收益最大?说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-2x+c经过直线y=x-3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)⊙M是过A、B、C三点的圆,连接MC、MB、BC,求劣弧CB的长;(结果用精确值表示)
(3)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.(结果用精确值表示)

查看答案和解析>>

同步练习册答案