分析 (1)先判断出△ABC≌△ADC得到∠BAC=∠DAC,再判断出△ABF≌△ADF得出∠AFB=∠AFD,最后进行简单的推算即可;
(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;
(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.
解答 (1)证明:在△ABC和△ADC中,$\left\{\begin{array}{l}{AB=AD}&{\;}\\{CB=CD}&{\;}\\{AC=AC}&{\;}\end{array}\right.$.
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC,
在△ABF和△ADF中,$\left\{\begin{array}{l}{AB=AD}&{\;}\\{∠BAF=∠DAF}&{\;}\\{AF=AF}&{\;}\end{array}\right.$,
∴△ABF≌△ADF(SAS),
∴∠AFB=∠AFD,
∵∠CFE=∠AFB,
∴∠AFD=∠CFE,
∴∠BAC=∠DAC,∠AFD=∠CFE;
(2)证明:∵AB∥CD,
∴∠BAC=∠ACD,
∵∠BAC=∠DAC,
∴∠BAC=∠ACD,
∴∠DAC=∠ACD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
∴四边形ABCD是菱形;
(3)解:BE⊥CD时,∠BCD=∠EFD;理由如下:
∵四边形ABCD是菱形,
∴BC=CD,∠BCF=∠DCF,
∵CF=CF,
∴△BCF≌△DCF,
∴∠CBF=∠CDF,
∵BE⊥CD,
∴∠BEC=∠DEF=90°,
∴∠BCD=∠EFD.
点评 此题是四边形综合题,主要考查了全等三角形的性质和判定,菱形的性质和判定,同角或等角的余角相等,解本题的关键是灵活运用三角形全等的判定.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①②③ | B. | ①③④ | C. | ①②③④ | D. | ③④ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com