精英家教网 > 初中数学 > 题目详情
精英家教网如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1
 
S2;(填“>”或“<”或“=”)
分析:根据矩形的性质,首先设矩形的边长分别为a,b,S1的边长分别为x,y,利用比例得出xy=ab-by.要使矩形的面积最大,故让S1的边长分别是△ABC,△ADC的中位线,得出边长的值,然后求出面积即可(也可用矩形的对角线平分矩形的面积分析得出答案).
解答:解:设矩形ABCD的边长分别为a,b,S1的边长分别为x,y.
∵MK∥AD
MK
AD
=
BK
BD
,即
x
a
=
BK
BD
,则x=
BK
BD
•a.
同理:y=
DK
BD
•b.
则S1=xy=
BK•DK
BD2
ab.
同理S2=
BK•DK
BD2
ab.
所以S1=S2.故答案为S1=S2
点评:本题的关键是利用函数分析最大取值,即都是三角形的中位线.然后利用三角形的面积公式即可求得相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为
菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,过矩形ABCD的对角线AC的中点O作EF⊥AC交AD于E,交BC于F,连接AF、EC.
(1)试判断四边形AFCE的形状,并证明你的结论;
(2)若CD=4,BC=8,求S四边形AFCE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•肇庆二模)如图,过矩形ABCD(AD>AB)的对角线AC的中点O作AC的垂直平分线EF,分别交AD、BC于点E、F,分别连接AF和CE.
(1)求证:四边形AFCE是菱形;
(2)过点E作AD的垂线交AC于点P,求证:2AE2=AC•AP.

查看答案和解析>>

同步练习册答案