【题目】山西省实验中学欲向清华大学推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图1:
其次,对三名候选人进行了笔试和面试两项测试.各项成绩如表所示:
测试项目 | 测试成绩/分 | ||
甲 | 乙 | 丙 | |
笔试 | 92 | 90 | 95 |
面试 | 85 | 95 | 80 |
图2是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题:
(1)补全图1和图2;
(2)请计算每名候选人的得票数;
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?
(4)若学校决定从这三名候选人中随机选两名参加清华大学夏令营,求甲和乙被选中的概率.(要求列表或画树状图)
【答案】(1)答案见解;(2)甲:68,乙:60,丙:56;(3)应该录取乙;(4).
【解析】
(1)扇形统计图中用1减去甲,丙,其他所占的百分比即为乙所占的百分比;然后根据表格可知甲的面试成绩为85,补全条形统计图即可;
(2)分别用总数200乘以各自所占的百分比即可求出得票数;
(3)按照加权平均数的计算方法分别计算出甲,乙,丙的平均分,然后从中选择平均分高的录取;
(4)用树状图列出所有的可能性,从中找出甲和乙被选中的可能,利用概率公式计算即可.
解:(1)图1中乙的百分比=1﹣8%﹣28%﹣34%=30%;
图2中,甲面试的成绩为85分,
如图,
(2)甲的票数是:200×34%=68(票),
乙的票数是:200×30%=60(票),
丙的票数是:200×28%=56(票);
(3)甲的平均成绩: (分)
乙的平均成绩:(分)
丙的平均成绩:(分)
∵乙的平均成绩最高,
∴应该录取乙.
(4)画树状图为:
共有6种等可能的结果数,其中甲和乙被选中的结果数为2,
所以甲和乙被选中的概率=
科目:初中数学 来源: 题型:
【题目】△ABC和△CDE是以点C为公共顶点的两个三角形.
(1)如图1,当AB=AC,CD=CE,∠BAC=∠DCE=90°时,连接BD,取BD的中点M,连接AM.探究AM、BE之间的数量关系,并证明你的结论;
(2)如图2,当AB=AC,∠BAC=120°,∠CDE=60°,∠DCE=90°时,连接BD,取BD的中点M,连接AM.探究AM、BE之间的关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1:y=kx+b 经过点A(﹣,0)和点B(2,5).
(1)求直线l1与y轴的交点坐标;
(2)若点C(a,a+2)与点D在直线l1上,过点D的直线l2与x轴正半轴交于点 E,当AC=CD=CE 时,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于C.直线y=x+3经过点A、C.
(1)求抛物线的解析式;
(2)P是抛物线上一动点,过P作PM∥y轴交直线AC于点M,设点P的横坐标为t.
①若以点C、O、M、P为顶点的四边形是平行四边形,求t的值.
②当射线MP,AC,MO中一条射线平分另外两条射线的夹角时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(6)个图形中面积为1的正方形的个数为( )
A.14B.20C.24D.27
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三位数t=(其中a、b、c不全相等且都不为0),重新排列各数位上的数字必可得到一个最大数和一个最小数,此最大数和最小数的差叫做原数的差数,记为T(t).例如,539的差数T(539)=953﹣359=594.
(1)根据以上方法求出T(268)= ,T(513)= ;
(2)已知三位数(其中a>b>1)的差数T()=495,且各数位上的数字之和为3的倍数,求所有符合条件的三位数的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.
(1)求袋子中白球的个数;(请通过列式或列方程解答)
(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.
(1)该商场两次共购进这种运动服多少套?
(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com