精英家教网 > 初中数学 > 题目详情
如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.
(1)请用直尺和圆规画一个“好玩三角形”;
(2)如图1,在Rt△ABC中,∠C=90°,tanA= ,求证:△ABC是“好玩三角形”;
(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.
①当β=45°时,若△APQ是“好玩三角形”,试求的值;
②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.
(4)依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)
(1)见解析   (2)见解析   (3)①   ②<tanβ<2
(4)在P、Q的运动过程中,当0<tanβ<时,使得△APQ成为“好玩三角形”的个数为2.
解:(1)如图1,

①作一条线段AB,
②作线段AB的中点O,
③以点O为圆心,AB长为半径画圆,
④在圆O上取一点C(点E、F除外),连接AC、BC.
∴△ABC是所求作的三角形.
(2)如图2,

取AC的中点D,连接BD.
∵∠C=90°,tanA=

∴设BC= x,则AC=2x,
∵D是AC的中点,
∴CD= AC=x
∴BD= = =2x,
∴AC=BD
∴△ABC是“好玩三角形”;
(3)①当β=45°,点P在AB上时,
∴∠ABC=2β=90°,
∴△APQ是等腰直角三角形,不可能是“好玩三角形”,
如图3,当P在BC上时,连接AC交PQ于点E,延长AB交QP的延长线于点F,

∵四边形ABCD是菱形,∠ABC=2β=90°,
∴四边形ABCD是正方形,
∴AB=BC,∠ACB=∠ACD=45°,
∴∠CAB=∠ACP,
∵PC=CQ,∠ACB=∠ACD,
∴∠AEF=∠CEP=90°,
∴△AEF∽△CEP,且△AEF、△CEP和△BFP都是等腰直角三角形,

∵PE=CE,

(Ⅰ)当底边PQ与它的中线AE相等时,即AE=PQ时,


(Ⅱ)当腰AP与它的中线QM相等,即AP=QM时,
作QN⊥AP于N,如图4

∵AP=QM=AQ
∴MN="AN=" MP.
∴QN= MN,
∴tan∠APQ=
∴tan∠APE=
=
②由①可知,当AE=PQ和AP=QM时,有且只有一个△APQ能成为“好玩三角形”,
<tanβ<2时,有且只有一个△APQ能成为“好玩三角形”.
(4)由(3)可以知道:在P、Q的运动过程中,当0<tanβ<时,使得△APQ成为“好玩三角形”的个数为2.
(1)先画一条线段AB,再确定AB的中点O,以点O为圆心,AB为半径画圆,在圆O上取一点C,连接AC、BC,则△ABC是所求作的三角形;
(2)取AC的中点D,连接BD,设BC= x,根据条件可以求出AC=2x,由三角函数可以求出BD=2x,从而得出AC=BD,从而得出结论;
(3)①当β=45°时,分情况讨论,P点在AB上时,△APQ是等腰直角三角形,不可能是“好玩三角形”,当P在BC上时,延长AB交QP的延长线于点F,可以求出,再分情况讨论,当AE=PQ和AP=QM时,求出的值;
②根据①求出的两个的值可以求出tanβ的取值范围;
(4)由(3)可以得出“在P、Q的运动过程中,当0<tanβ<时,使得△APQ成为‘好玩三角形’的个数为2”是真命题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在数学课上,同学们研究图形的拼接问题.
比如:两个全等的等腰直角三角形纸片既能拼成一个大的等腰直角三角形(如图1),也能拼成一个正方形(如图2).

(1)现有两个相似的直角三角形纸片,各有一个角为,恰好可以拼成另一个含有30°角的直角三角形,那么在原来的两个三角形纸片中,较大的与较小的纸片的相似比为________,请画出拼接的示意图;
(2)现有一个矩形恰好由三个各有一个角为的直角三角形纸片拼成,请你画出两种不同拼法的示意图.在拼成这个矩形的三角形中,若每种拼法中最小的三角形的斜边长为,请直接写出每种拼法中最大三角形的斜边长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平行四边形中,点的中点,相交于点,那么等于       

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,梯形ABCD中AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为
A.2:3B.2:5C.4:9D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知E、F是平行四边形ABCD对角线BD的三等分点,且CG=3,则AD等于     

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=__________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,AB=10,AD=4,点P是边AB上一点,若△APD与△BPC相似,则满足条件的点P有   个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为 (  )

A.   B.   C.   D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是(   )
A.6米B.8米C.18米D.24米

查看答案和解析>>

同步练习册答案