精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD中,AD∥BC,E是CD上一点,且AE、BE分别平分∠BAD、∠ABC.
(1)求证:CE=DE;
(2)若AE=3,BE=4,求四边形ABCD的面积.
分析:(1)延长AE,BC交于M,根据AE、BE分别平分∠BAD、∠ABC,可得出∠AEB=90°,继而证明△ABE≌△MBE,得出AE=ME后,证明△ADE≌△MCE,即可得出结论.
(2)根据S四ABCD=S△ABM=2S△ABE,即可得出答案.
解答:解:(1)延长AE,BC交于M,
∵AD∥BC,
∴∠DAB+∠ABC=180°,
又∵AE、BE分别平分∠BAD、∠ABC,
∴∠EAB+∠ABE=90°,
∴∠AEB=90゜=∠BEM,
在△ABE和△MBE中,
∠ABE=∠MBE
BE=BE
∠BEA=∠BEM

∴△ABE≌△MBE,
∴AE=ME,
在△ADE和△MCE中,
∠AED=∠MEC
∠D=∠C
AE=ME

∴△ADE≌△MCE,
∴CE=DE.
(2)S△ABE=
1
2
AE×BE=6,
∵△ADE≌△MCE,
∴S四ABCD=S△ABM=2S△ABE=12.
点评:本题考查了全等三角形的判定与性质,解答本题的关键是掌握全等三角形的判定定理,及全等三角形的性质:对应边相等,对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案