精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在AB边上移动,动点F在AC边上移动.
(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,求BE的长;若不能,请说明理由;
(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,并写出x的取值范围.
分析:(1)可分三种情况进行讨论:①当OE=EF时;②当OF=EF时;③当OE=OF时;
(2)本题可通过图中的相似三角形BEO和CFO,可得出关于BO,OC,OE,OF的比例关系式,由于OB=OC=
2
,由此可得出关于y,x的函数关系式.
解答:解:(1)点E,F移动的过程中,△OEF能成为∠EOF=45°的等腰三角形,
①当OE=EF时,∠OEF是直角,F,A重合,OE是三角形ABC的中位线,E是AB中点,此时BE=1;
②当OF=EF时,∠OFE是直角,与①同理,E,A重合,F是AC中点,此时BE=2;
③当OE=OF时,如果连接OA,那么OA必然平分∠BAC,
精英家教网
∴BO=CO,∠B=∠C=45°,EO=FO,
由∠EOF=45°,由对称性得到∠AOE=∠AOF=22.5°,
∴∠EOB=∠FOC=67.5°,
又∵BO=CO,∠B=∠C=45°,
∴△BEO≌△CFO(ASA),
又∵∠BEO=∠BOE=∠COF=∠CFO=67.5°,
∴BE=BO=CO=CF=
1
2
BC,
∵AB=AC=2,
∴BC=2
2
,由此可得出BE=CF=
2


(2)在△OEB和△FOC中,
∵∠EOB+∠FOC=135°,∠EOB+∠OEB=135°,
∴∠FOC=∠OEB,
又∵∠B=∠C,
∴△OEB∽△FOC,
BE
CO
=
BO
CF

∵BE=x,CF=y,OB=OC=
1
2
22+22
=
2

x
2
=
2
y

则y=
2
x
(1≤x≤2).
点评:本题主要考查了相似三角形的性质和等腰三角形的性质,切线的判定等知识点,通过相似三角形得出角相等或边成比例是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,E、F分别在AB、AC上且AE=CF.
求证:EF≥
12
BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,P是AB上一点,连接CP,以下条件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•梓潼县一模)如图,已知△ABC中,∠C=90°,AC=4,BC=3,则sinA=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,BC=8,BC边上的高h=4,D为BC上一点,EF∥BC交AB于E,交AC于F(EF不过A、B),设E到BC的距离为x,△DEF的面积为y,那么y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,D是BC中点,则下列结论不正确的是(  )

查看答案和解析>>

同步练习册答案