精英家教网 > 初中数学 > 题目详情

【题目】小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )

A.600﹣250
B.600 ﹣250米
C.350+350
D.500

【答案】B
【解析】解:∵BE:AE=5:12,

=13,

∴BE:AE:AB=5:12:13,

∵AB=1300米,

∴AE=1200米,

BE=500米,

设EC=x米,

∵∠DBF=60°,

∴DF= x米.

又∵∠DAC=30°,

∴AC= CD.

即:1200+x= (500+ x),

解得x=600﹣250

∴DF= x=600 ﹣750,

∴CD=DF+CF=600 ﹣250(米).

答:山高CD为(600 ﹣250)米.

故选:B.

【考点精析】解答此题的关键在于理解关于坡度坡角问题的相关知识,掌握坡面的铅直高度h和水平宽度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面与水平面的夹角记作A(叫做坡角),那么i=h/l=tanA.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中的两点A(m,0),B(2m,0)(m>0),二次函数y=ax2+bx+m的图象与x轴交与A,B两点与y轴交于点C,顶点为点D.

(1)当m=1时,直线BC的解析式为 , 二次函数y=ax2+bx+m的解析式为
(2)求二次函数y=ax2+bx+m的解析式为(用含m的式子表示);
(3)连接AC、AD、BD,请你探究 的值是否与m有关?若有关,求出它与m的关系;若无关,说明理由;
(4)当m为正整数时,依次得到点A1 , A2 , …,Am的横坐标分别为1,2,…m;点B1 , B2 , …,Bm 的横坐标分别为2,4,…2m(m≤10);经过点A1 , B1 , 点A2 , B2 , …,点Am , Bm的这组抛物线y=ax2+bx+m分别与y轴交于点C1 , C2 , …,Cm , 由此得到了一组直线B1C1 , B2C2 , …,BmCm , 在点B1 , B2 , …,Bm 中任取一点Bn , 以线段OBn为边向上作正方形OBnEnFn , 若点En在这组直线中的一条直线上,直接写出所有满足条件的点En的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a>b,选择适当的不等号填空:

(1)-________

(2)1-5a__________1-5b;

(3)ax2_________bx2

(4)a(-c2-1)_________b(-c2-1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的方程(m-1x2+m+1x+3m-1=0,当m_________时,是一元一次方程;当m_________时,是一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(﹣2015)0+|1﹣ |﹣2cos45°+ +(﹣ ﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2 ,求⊙O的半径和线段PB的长;
(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.

1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含ab的代数式表示S1S2

2)请写出上述过程所揭示的乘法公式;

3试利用这个公式计算:(2+1)(22+1)(24+1)(28+1+1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC,∠ACB=90°,AC=BC,CDABD,M,NAC,BC上的动点,且∠MDN=90°,下列结论:①AM=CN;②四边形MDNC的面积为定值;③AM2+BN2=MN2;④NM平分∠CND.其中正确的是 (   )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

同步练习册答案