精英家教网 > 初中数学 > 题目详情

如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC•tanB=


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    5
C
分析:由DE=2,OE=3可知AO=OD=OE+ED=5,可得AE=8,连接BD、CD,可证∠B=∠ADC,∠C=∠ADB,∠DBA=∠DCA=90°,将tanC,tanB在直角三角形中用线段的比表示,再利用相似转化为已知线段的比.
解答:连接BD、CD,由圆周角定理可知∠B=∠ADC,∠C=∠ADB,
∴△ABE∽△CDE,△ACE∽△BDE,
==
由AD为直径可知∠DBA=∠DCA=90°,
∵DE=2,OE=3,
∴AO=OD=OE+ED=5,AE=8,
tanC•tanB=tan∠ADB•tan∠ADC======4.
故选C.
点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,或者利用同角(或余角)的三角函数关系式求三角函数值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案