精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC内接于⊙O,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,P是BC边上一点,连接AD、DC、AP.已知AB=8,CP=2,Q是线段AP上一动点,连接BQ并延长交四边形ABCD的一边于点R,且满足AP=BR,则
BQQR
的值为
 
分析:先证明四边形ABCD是正方形,得出AD∥BC.根据题意,可知点R所在的位置可能有两种情况:①点R在线段AD上;②点R在线段CD上.针对每一种情况,分别求出BQ:QR的值.
解答:精英家教网解:∵△ABC内接于⊙O,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,
∴四边形ABCD是正方形.
∴AD∥BC,
当AP=BR时,分两种情况:
①点R在线段AD上,
∵AD∥BC,
∴∠ARB=∠PBR,∠RAQ=∠APB,
在△AQR与△PQB中,
∠RAQ=∠QPB
AR=BP
∠ARB=∠RBP

∴△AQR≌△PQB,
∴BQ=QR
∴BQ:QR=1;
②点R在线段CD上,此时△ABP≌△BCR,
∴∠BAP=∠CBR.
∵∠CBR+∠ABR=90°,
∴∠BAP+∠ABR=90°,精英家教网
∴BQ是直角△ABP斜边上的高,
∴BQ=
AB•BP
AP
=
8×6
10
=4.8,
∴QR=BR-BQ=10-4.8=5.2,
∴BQ:QR=4.8:5.2=
12
13

故答案为:1或
12
13
点评:本题综合考查了平行线的判定,及正方形的判定,及全等的判定及性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案